BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22483111)

  • 1. Comparison between actin filament models: coarse-graining reveals essential differences.
    Saunders MG; Voth GA
    Structure; 2012 Apr; 20(4):641-53. PubMed ID: 22483111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state.
    Splettstoesser T; Noé F; Oda T; Smith JC
    Proteins; 2009 Aug; 76(2):353-64. PubMed ID: 19156817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A coarse-grained molecular model for actin-myosin simulation.
    Taylor WR; Katsimitsoulia Z
    J Mol Graph Model; 2010 Sep; 29(2):266-79. PubMed ID: 20724184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical implications of a three-dimensional model of monomeric actin bound to magnesium-chelated ATP.
    Takamoto K; Kamal JK; Chance MR
    Structure; 2007 Jan; 15(1):39-51. PubMed ID: 17223531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained modeling of conformational transitions underlying the processive stepping of myosin V dimer along filamentous actin.
    Zheng W
    Proteins; 2011 Jul; 79(7):2291-305. PubMed ID: 21590746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural modeling and molecular dynamics simulation of the actin filament.
    Splettstoesser T; Holmes KC; Noé F; Smith JC
    Proteins; 2011 Jul; 79(7):2033-43. PubMed ID: 21557314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.
    Ahmed A; Villinger S; Gohlke H
    Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of dynamics of actin filaments by remodeling them in shear flows.
    Inoue Y; Deji T; Shimada Y; Hojo M; Adachi T
    Comput Biol Med; 2010; 40(11-12):876-82. PubMed ID: 20943218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained modeling and simulation of actin filament behavior based on Brownian dynamics method.
    Shimada Y; Adachi T; Inoue Y; Hojo M
    Mol Cell Biomech; 2009 Sep; 6(3):161-73. PubMed ID: 19670826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for polarized elongation of actin filaments.
    Zsolnay V; Katkar HH; Chou SZ; Pollard TD; Voth GA
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30458-30464. PubMed ID: 33199648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide regulation of the structure and dynamics of G-actin.
    Saunders MG; Tempkin J; Weare J; Dinner AR; Roux B; Voth GA
    Biophys J; 2014 Apr; 106(8):1710-20. PubMed ID: 24739170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymeric structures and dynamic properties of the bacterial actin AlfA.
    Popp D; Narita A; Ghoshdastider U; Maeda K; Maéda Y; Oda T; Fujisawa T; Onishi H; Ito K; Robinson RC
    J Mol Biol; 2010 Apr; 397(4):1031-41. PubMed ID: 20156449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-enhanced association of proteins due to electrostatic interaction: a coarse-grained simulation of actin-myosin binding.
    Okazaki K; Sato T; Takano M
    J Am Chem Soc; 2012 May; 134(21):8918-25. PubMed ID: 22559201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the differences in actin binding by human ADF and cofilin.
    Yeoh S; Pope B; Mannherz HG; Weeds A
    J Mol Biol; 2002 Jan; 315(4):911-25. PubMed ID: 11812157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulations of actin polymerization can explain the barbed-pointed end asymmetry.
    Sept D; Elcock AH; McCammon JA
    J Mol Biol; 1999 Dec; 294(5):1181-9. PubMed ID: 10600376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerization and structure of nucleotide-free actin filaments.
    De La Cruz EM; Mandinova A; Steinmetz MO; Stoffler D; Aebi U; Pollard TD
    J Mol Biol; 2000 Jan; 295(3):517-26. PubMed ID: 10623543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water molecules in the nucleotide binding cleft of actin: effects on subunit conformation and implications for ATP hydrolysis.
    Saunders MG; Voth GA
    J Mol Biol; 2011 Oct; 413(1):279-91. PubMed ID: 21856312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of interdomain motion in g-actin by the natural product latrunculin: a molecular dynamics study.
    Rennebaum S; Caflisch A
    Proteins; 2012 Aug; 80(8):1998-2008. PubMed ID: 22488806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the role of topological frustration in actin refolding with molecular simulations.
    Lee JY; Duan L; Iverson TM; Dima RI
    J Phys Chem B; 2012 Feb; 116(5):1677-86. PubMed ID: 22243338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.