These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22483111)

  • 21. Virtual interface substructure synthesis method for normal mode analysis of super-large molecular complexes at atomic resolution.
    Chen X; Sun Y; An X; Ming D
    J Chem Phys; 2011 Oct; 135(14):144108. PubMed ID: 22010699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiscale modeling and mechanics of filamentous actin cytoskeleton.
    Yamaoka H; Matsushita S; Shimada Y; Adachi T
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):291-302. PubMed ID: 21614531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coarse-grained protein molecular dynamics simulations.
    Derreumaux P; Mousseau N
    J Chem Phys; 2007 Jan; 126(2):025101. PubMed ID: 17228975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rigorous coarse-graining for the dynamics of linear systems with applications to relaxation dynamics in proteins.
    Soheilifard R; Makarov DE; Rodin GJ
    J Chem Phys; 2011 Aug; 135(5):054107. PubMed ID: 21823690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Docking, molecular dynamics and QM/MM studies to delineate the mode of binding of CucurbitacinE to F-actin.
    Kumar RP; Roopa L; Nongthomba U; Sudheer Mohammed MM; Kulkarni N
    J Mol Graph Model; 2016 Jan; 63():29-37. PubMed ID: 26615469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of profilin on actin-bound nucleotide exchange and actin polymerization dynamics.
    Selden LA; Kinosian HJ; Estes JE; Gershman LC
    Biochemistry; 1999 Mar; 38(9):2769-78. PubMed ID: 10052948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials.
    Lu L; Voth GA
    J Chem Phys; 2011 Jun; 134(22):224107. PubMed ID: 21682507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of tensile force on the mechanical behavior of actin filaments.
    Matsushita S; Inoue Y; Hojo M; Sokabe M; Adachi T
    J Biomech; 2011 Jun; 44(9):1776-81. PubMed ID: 21536289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin.
    Pivovarova AV; Khaitlina SY; Levitsky DI
    FEBS J; 2010 Sep; 277(18):3812-22. PubMed ID: 20718862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymerization, three-dimensional structure and mechanical properties of Ddictyostelium versus rabbit muscle actin filaments.
    Steinmetz MO; Hoenger A; Stoffler D; Noegel AA; Aebi U; Schoenenberger CA
    J Mol Biol; 2000 Oct; 303(2):171-84. PubMed ID: 11023784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of fragmentation and dissociation of two-strand protein filaments: Coarse-grained simulations and experiments.
    Zaccone A; Terentjev I; Herling TW; Knowles TP; Aleksandrova A; Terentjev EM
    J Chem Phys; 2016 Sep; 145(10):105101. PubMed ID: 27634278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymerization of actin filaments coupled with adenosine triphosphate hydrolysis: Brownian dynamics and theoretical analysis.
    Guo K; Xiao W; Qiu D
    J Chem Phys; 2011 Sep; 135(10):105101. PubMed ID: 21932920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How depolymerization can promote polymerization: the case of actin and profilin.
    Yarmola EG; Bubb MR
    Bioessays; 2009 Nov; 31(11):1150-60. PubMed ID: 19795407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments.
    Lehman W; Hatch V; Korman V; Rosol M; Thomas L; Maytum R; Geeves MA; Van Eyk JE; Tobacman LS; Craig R
    J Mol Biol; 2000 Sep; 302(3):593-606. PubMed ID: 10986121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure of F-actin. Results of global searches using data from electron microscopy and X-ray crystallography.
    Mendelson RA; Morris E
    J Mol Biol; 1994 Jul; 240(2):138-54. PubMed ID: 8027998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The polyelectrolyte behavior of actin filaments: a 25Mg NMR study.
    Xian W; Tang JX; Janmey PA; Braunlin WH
    Biochemistry; 1999 Jun; 38(22):7219-26. PubMed ID: 10353833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of glyceraldehyde-3-phosphate dehydrogenase with G- and F-actin predicted by Brownian dynamics.
    Ouporov IV; Knull HR; Lowe SL; Thomasson KA
    J Mol Recognit; 2001; 14(1):29-41. PubMed ID: 11180560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformational dynamics of capping protein and interaction partners: simulation studies.
    Lukman S; Robinson RC; Wales D; Verma CS
    Proteins; 2012 Apr; 80(4):1066-77. PubMed ID: 22253039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.