BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22483119)

  • 1. An asymmetry-to-symmetry switch in signal transmission by the histidine kinase receptor for TMAO.
    Moore JO; Hendrickson WA
    Structure; 2012 Apr; 20(4):729-41. PubMed ID: 22483119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TorT, a member of a new periplasmic binding protein family, triggers induction of the Tor respiratory system upon trimethylamine N-oxide electron-acceptor binding in Escherichia coli.
    Baraquet C; Théraulaz L; Guiral M; Lafitte D; Méjean V; Jourlin-Castelli C
    J Biol Chem; 2006 Dec; 281(50):38189-99. PubMed ID: 17040909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unorthodox sensor protein (TorS) mediates the induction of the tor structural genes in response to trimethylamine N-oxide in Escherichia coli.
    Jourlin C; Bengrine A; Chippaux M; Méjean V
    Mol Microbiol; 1996 Jun; 20(6):1297-306. PubMed ID: 8809780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS.
    Moore JO; Hendrickson WA
    Structure; 2009 Sep; 17(9):1195-204. PubMed ID: 19748340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay.
    Roggiani M; Goulian M
    J Bacteriol; 2015 Jun; 197(12):1976-87. PubMed ID: 25825431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of the trimethylamine oxide reductase regulatory elements of Shewanella oneidensis in Escherichia coli.
    Gon S; Patte JC; Dos Santos JP; Méjean V
    J Bacteriol; 2002 Mar; 184(5):1262-9. PubMed ID: 11844754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid dephosphorylation of the TorR response regulator by the TorS unorthodox sensor in Escherichia coli.
    Ansaldi M; Jourlin-Castelli C; Lepelletier M; Théraulaz L; Méjean V
    J Bacteriol; 2001 Apr; 183(8):2691-5. PubMed ID: 11274133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transphosphorylation of the TorR response regulator requires the three phosphorylation sites of the TorS unorthodox sensor in Escherichia coli.
    Jourlin C; Ansaldi M; Méjean V
    J Mol Biol; 1997 Apr; 267(4):770-7. PubMed ID: 9135110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ISSo2 insertions in structural and regulatory genes of the trimethylamine oxide reductase of Shewanella oneidensis.
    Bordi C; Iobbi-Nivol C; Méjean V; Patte JC
    J Bacteriol; 2003 Mar; 185(6):2042-5. PubMed ID: 12618472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The TorR high-affinity binding site plays a key role in both torR autoregulation and torCAD operon expression in Escherichia coli.
    Ansaldi M; Simon G; Lepelletier M; Méjean V
    J Bacteriol; 2000 Feb; 182(4):961-6. PubMed ID: 10648521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulated Stochasticity in a Bacterial Signaling Network Permits Tolerance to a Rapid Environmental Change.
    Carey JN; Mettert EL; Roggiani M; Myers KS; Kiley PJ; Goulian M
    Cell; 2018 Mar; 173(1):196-207.e14. PubMed ID: 29502970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TorC apocytochrome negatively autoregulates the trimethylamine N-oxide (TMAO) reductase operon in Escherichia coli.
    Ansaldi M; Bordi C; Lepelletier M; Méjean V
    Mol Microbiol; 1999 Jul; 33(2):284-95. PubMed ID: 10411745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The torR gene of Escherichia coli encodes a response regulator protein involved in the expression of the trimethylamine N-oxide reductase genes.
    Simon G; Méjean V; Jourlin C; Chippaux M; Pascal MC
    J Bacteriol; 1994 Sep; 176(18):5601-6. PubMed ID: 8083154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An unsuspected autoregulatory pathway involving apocytochrome TorC and sensor TorS in Escherichia coli.
    Gon S; Jourlin-Castelli C; Théraulaz L; Méjean V
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11615-20. PubMed ID: 11562502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.
    McCrindle SL; Kappler U; McEwan AG
    Adv Microb Physiol; 2005; 50():147-98. PubMed ID: 16221580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The periplasmic TorT protein is required for trimethylamine N-oxide reductase gene induction in Escherichia coli.
    Jourlin C; Simon G; Pommier J; Chippaux M; Méjean V
    J Bacteriol; 1996 Feb; 178(4):1219-23. PubMed ID: 8576063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of anaerobic cultures of Escherichia coli K-12 in response to environmental trimethylamine-N-oxide.
    Denby KJ; Rolfe MD; Crick E; Sanguinetti G; Poole RK; Green J
    Environ Microbiol; 2015 Jul; 17(7):2477-91. PubMed ID: 25471524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bacterial signaling system regulates noise to enable bet hedging.
    Carey JN; Goulian M
    Curr Genet; 2019 Feb; 65(1):65-70. PubMed ID: 29947971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificities of Escherichia coli thioesterase I/protease I/lysophospholipase L1 are governed by its switch loop movement.
    Lo YC; Lin SC; Shaw JF; Liaw YC
    Biochemistry; 2005 Feb; 44(6):1971-9. PubMed ID: 15697222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a second two-component signal transduction system that controls fosfomycin tolerance and glycerol-3-phosphate uptake.
    Kurabayashi K; Hirakawa Y; Tanimoto K; Tomita H; Hirakawa H
    J Bacteriol; 2015 Mar; 197(5):861-71. PubMed ID: 25512306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.