BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 224832)

  • 1. Substrate oxidation and energy production by Guerin epithelioma mitochondria.
    Pawlicka E; Rzezycki CW
    Arch Geschwulstforsch; 1979; 49(2):124-31. PubMed ID: 224832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Optimization of energy-dependent processes in mitochondria from rat liver and brain after inhalation of negative air ions].
    Stavrovskaia IG; Sirota TV; Saakian IR; Kondrashova MN
    Biofizika; 1998; 43(5):766-71. PubMed ID: 9914836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the beta-hydroxybutyrate/acetoacetate ratio on the redox states of mitochondrial NAD(P) and cytochrome c systems, extramitochondrial ATP/ADP ratio and the respiration of isolated liver mitochondria in the resting state.
    Schönfeld P; Bohnensack R; Böhme G; Kunz W
    Biomed Biochim Acta; 1983; 42(1):3-13. PubMed ID: 6309158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of precursors of biosyntheses on the energy metabolism of the liver cell.
    Letko G; Küster U; Pohl K
    Biomed Biochim Acta; 1983; 42(4):323-33. PubMed ID: 6312977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic effects of carbenoxolone in rat liver.
    Pivato LS; Constantin RP; Ishii-Iwamoto EL; Kelmer-Bracht AM; Yamamoto NS; Constantin J; Bracht A
    J Biochem Mol Toxicol; 2006; 20(5):230-40. PubMed ID: 17009240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of halothane and decreased PO2 on high energy phosphate levels maintained by isolated rat liver mitochondria.
    Becker GL; Miletich DJ; Albrecht RF
    Anesth Analg; 1986 Nov; 65(11):1130-4. PubMed ID: 3767011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramitochondrial fatty acid activation enhances control strength of adenine nucleotide translocase.
    Schönfeld P; Bohnensack R
    Biomed Biochim Acta; 1991; 50(7):841-9. PubMed ID: 1759963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate-dependent effects of calcium on rat retinal mitochondrial respiration: physiological and toxicological studies.
    Medrano CJ; Fox DA
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):309-21. PubMed ID: 8171438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of oxidative phosphorylative activity and calcium-induced respiration of rat liver mitochondria following living Escherichia coli injection.
    Tanaka J; Kono Y; Shimahara Y; Sato T; Jones RT; Cowley RA; Trump BF
    Adv Shock Res; 1982; 7():77-90. PubMed ID: 6753540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio.
    Bohnensack R
    Biomed Biochim Acta; 1984; 43(4):403-11. PubMed ID: 6487276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Phosphorylation and uncoupled respiration in the tissue of rats during the development of homoiothermy].
    Akhmerov RN
    Ontogenez; 1986; 17(5):516-24. PubMed ID: 3785874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: role of adenine nucleotide translocator.
    Quentin E; Avéret N; Guérin B; Rigoulet M
    Biochem Biophys Res Commun; 1994 Jul; 202(2):816-21. PubMed ID: 8048953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen uptake by mitochondria in demembranated human spermatozoa: a reliable tool for the evaluation of sperm respiratory efficiency.
    Ferramosca A; Focarelli R; Piomboni P; Coppola L; Zara V
    Int J Androl; 2008 Jun; 31(3):337-45. PubMed ID: 17573845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control mechanisms of energy-dependent metabolic pathways in hepatocytes.
    Tager JM; Wanders RJ; Groen AK; van der Meer R; Akerboom TP; Meijer AJ
    Acta Biol Med Ger; 1981; 40(7-8):895-906. PubMed ID: 7036612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenine nucleotide transport in hepatoma mitochondria and its correlation with hepatoma growth rates and tumor size.
    Barbour RL; Chan SH
    Cancer Res; 1983 Apr; 43(4):1511-7. PubMed ID: 6831400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in hepatic energy metabolism in experimental acute pancreatitis.
    Yan LN; Ozawa K; Kobayashi N
    Chin Med J (Engl); 1992 Aug; 105(8):684-8. PubMed ID: 1458973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of mitochondrial functions in digitonin-permeabilized rat liver cells.
    Boschmann M; Halangk W; Bohnensack R
    Biomed Biochim Acta; 1989; 48(9):645-52. PubMed ID: 2619733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of bicarbonate and insulin on energy metabolism in the mitochondria of rat liver].
    Kosenko EA; Kaminskiĭ IuG; Derkachev EF; Shchipakin VN; Kondrashova MN
    Vopr Med Khim; 1982; 28(6):87-90. PubMed ID: 6760541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.