BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22483310)

  • 1. Mitochondria as an easy target to oxidative stress events in Parkinson's disease.
    Reale M; Pesce M; Priyadarshini M; Kamal MA; Patruno A
    CNS Neurol Disord Drug Targets; 2012 Jun; 11(4):430-8. PubMed ID: 22483310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of oxidative stress in Parkinson's disease.
    Dias V; Junn E; Mouradian MM
    J Parkinsons Dis; 2013; 3(4):461-91. PubMed ID: 24252804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.
    Zuo L; Motherwell MS
    Gene; 2013 Dec; 532(1):18-23. PubMed ID: 23954870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auraptene Mitigates Parkinson's Disease-Like Behavior by Protecting Inhibition of Mitochondrial Respiration and Scavenging Reactive Oxygen Species.
    Jang Y; Choo H; Lee MJ; Han J; Kim SJ; Ju X; Cui J; Lee YL; Ryu MJ; Oh ES; Choi SY; Chung W; Kweon GR; Heo JY
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of siRNA-induced silencing of cellular prion protein on tyrosine hydroxylase expression in the substantia nigra of a rat model of Parkinson's disease.
    Wang X; Yang HA; Wang XN; Du YF
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27173342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Parkinson's - tyrosine hydroxylase and oxidative stress as points of interventions.
    Khan MS; Tabrez S; Priyadarshini M; Priyamvada S; Khan MM
    CNS Neurol Disord Drug Targets; 2012 Jun; 11(4):369-80. PubMed ID: 22483312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease.
    Merad-Boudia M; Nicole A; Santiard-Baron D; Saillé C; Ceballos-Picot I
    Biochem Pharmacol; 1998 Sep; 56(5):645-55. PubMed ID: 9783733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease.
    Kim H; Kim SH; Cha H; Kim SR; Lee JH; Park JW
    Free Radic Res; 2016 Aug; 50(8):853-60. PubMed ID: 27142242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox sensitivity of tyrosine hydroxylase activity and expression in dopaminergic dysfunction.
    Di Giovanni G; Pessia M; Di Maio R
    CNS Neurol Disord Drug Targets; 2012 Jun; 11(4):419-29. PubMed ID: 22483306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative Modification and Its Implications for the Neurodegeneration of Parkinson's Disease.
    Zhao J; Yu S; Zheng Y; Yang H; Zhang J
    Mol Neurobiol; 2017 Mar; 54(2):1404-1418. PubMed ID: 26843115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial dysfunction and oxidative stress in Parkinson's disease.
    Subramaniam SR; Chesselet MF
    Prog Neurobiol; 2013; 106-107():17-32. PubMed ID: 23643800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.
    Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M
    Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review).
    Guo JD; Zhao X; Li Y; Li GR; Liu XL
    Int J Mol Med; 2018 Apr; 41(4):1817-1825. PubMed ID: 29393357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model.
    Sanders LH; Timothy Greenamyre J
    Free Radic Biol Med; 2013 Sep; 62():111-120. PubMed ID: 23328732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress.
    Nataraj J; Manivasagam T; Thenmozhi AJ; Essa MM
    Nutr Neurosci; 2016 Jul; 19(6):237-46. PubMed ID: 25730317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and mitochondrial dysfunction are the underlying events of dopaminergic neurodegeneration in homocysteine rat model of Parkinson's disease.
    Bhattacharjee N; Borah A
    Neurochem Int; 2016 Dec; 101():48-55. PubMed ID: 27732886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant PINK1 upregulates tyrosine hydroxylase and dopamine levels, leading to vulnerability of dopaminergic neurons.
    Zhou ZD; Refai FS; Xie SP; Ng SH; Chan CH; Ho PG; Zhang XD; Lim TM; Tan EK
    Free Radic Biol Med; 2014 Mar; 68():220-33. PubMed ID: 24374372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible pathophysiological role of tyrosine hydroxylase in Parkinson's disease suggested by postmortem brain biochemistry: a contribution for the special 70th birthday symposium in honor of Prof. Peter Riederer.
    Nakashima A; Ota A; Kaneko YS; Mori K; Nagasaki H; Nagatsu T
    J Neural Transm (Vienna); 2013 Jan; 120(1):49-54. PubMed ID: 22644539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.