BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22483310)

  • 21. Current perspective of mitochondrial biology in Parkinson's disease.
    Ammal Kaidery N; Thomas B
    Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative Stress and Dopaminergic Metabolism: A Major PD Pathogenic Mechanism and Basis of Potential Antioxidant Therapies.
    Rasool A; Manzoor R; Ullah K; Afzal R; Ul-Haq A; Imran H; Kaleem I; Akhtar T; Farrukh A; Hameed S; Bashir S
    CNS Neurol Disord Drug Targets; 2024; 23(7):852-864. PubMed ID: 37303175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overview of tyrosine hydroxylase in Parkinson's disease.
    Zhu Y; Zhang J; Zeng Y
    CNS Neurol Disord Drug Targets; 2012 Jun; 11(4):350-8. PubMed ID: 22483316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can mesenchymal stem cells reduce vulnerability of dopaminergic neurons in the substantia nigra to oxidative insult in individuals at risk to Parkinson's disease?
    Datta I; Bhonde R
    Cell Biol Int; 2012 Jul; 36(7):617-24. PubMed ID: 22417707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells.
    Xie B; Lin F; Peng L; Ullah K; Wu H; Qing H; Deng Y
    Acta Biochim Biophys Sin (Shanghai); 2014 Nov; 46(11):950-6. PubMed ID: 25274329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutathione metabolism and Parkinson's disease.
    Smeyne M; Smeyne RJ
    Free Radic Biol Med; 2013 Sep; 62():13-25. PubMed ID: 23665395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease.
    Yeung PKK; Lai AKW; Son HJ; Zhang X; Hwang O; Chung SSM; Chung SK
    Neurobiol Aging; 2017 Feb; 50():119-133. PubMed ID: 27960106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the lipopolysaccharide induced model of Parkinson's disease: Role of oxidative stress and neuroinflammation.
    Sharma N; Nehru B
    Neurochem Int; 2015 Aug; 87():92-105. PubMed ID: 26055970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antagonistic pleiotropic effects of nitric oxide in the pathophysiology of Parkinson's disease.
    Tripathy D; Chakraborty J; Mohanakumar KP
    Free Radic Res; 2015; 49(9):1129-39. PubMed ID: 25968946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson's disease.
    Jellinger KA
    Drugs Aging; 1999 Feb; 14(2):115-40. PubMed ID: 10084365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of parkinson's disease.
    Ebadi M; Govitrapong P; Sharma S; Muralikrishnan D; Shavali S; Pellett L; Schafer R; Albano C; Eken J
    Biol Signals Recept; 2001; 10(3-4):224-53. PubMed ID: 11351130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detrimental effects of oxidative losses in parkin activity in a model of sporadic Parkinson's disease are attenuated by restoration of PGC1alpha.
    Siddiqui A; Rane A; Rajagopalan S; Chinta SJ; Andersen JK
    Neurobiol Dis; 2016 Sep; 93():115-20. PubMed ID: 27185595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial ferritin suppresses MPTP-induced cell damage by regulating iron metabolism and attenuating oxidative stress.
    You LH; Li Z; Duan XL; Zhao BL; Chang YZ; Shi ZH
    Brain Res; 2016 Jul; 1642():33-42. PubMed ID: 27017962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The centrality of mitochondria in the pathogenesis and treatment of Parkinson's disease.
    Camilleri A; Vassallo N
    CNS Neurosci Ther; 2014 Jul; 20(7):591-602. PubMed ID: 24703487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The function of tyrosine hydroxylase in the normal and Parkinsonian brain.
    Tolleson C; Claassen D
    CNS Neurol Disord Drug Targets; 2012 Jun; 11(4):381-6. PubMed ID: 22483314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson's disease models.
    Kang YC; Son M; Kang S; Im S; Piao Y; Lim KS; Song MY; Park KS; Kim YH; Pak YK
    Exp Mol Med; 2018 Aug; 50(8):1-13. PubMed ID: 30120245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease.
    Burbulla LF; Song P; Mazzulli JR; Zampese E; Wong YC; Jeon S; Santos DP; Blanz J; Obermaier CD; Strojny C; Savas JN; Kiskinis E; Zhuang X; Krüger R; Surmeier DJ; Krainc D
    Science; 2017 Sep; 357(6357):1255-1261. PubMed ID: 28882997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers.
    Medeiros MS; Schumacher-Schuh A; Cardoso AM; Bochi GV; Baldissarelli J; Kegler A; Santana D; Chaves CM; Schetinger MR; Moresco RN; Rieder CR; Fighera MR
    PLoS One; 2016; 11(1):e0146129. PubMed ID: 26751079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apocyanin, a Microglial NADPH Oxidase Inhibitor Prevents Dopaminergic Neuronal Degeneration in Lipopolysaccharide-Induced Parkinson's Disease Model.
    Sharma N; Nehru B
    Mol Neurobiol; 2016 Jul; 53(5):3326-3337. PubMed ID: 26081143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial control of cell bioenergetics in Parkinson's disease.
    Requejo-Aguilar R; Bolaños JP
    Free Radic Biol Med; 2016 Nov; 100():123-137. PubMed ID: 27091692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.