These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22483348)

  • 1. Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required.
    Pocaznoi D; Erable B; Etcheverry L; Delia ML; Bergel A
    Bioresour Technol; 2012 Jun; 114():334-41. PubMed ID: 22483348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes.
    Pons L; Délia ML; Bergel A
    Bioresour Technol; 2011 Feb; 102(3):2678-83. PubMed ID: 21131196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes.
    Tang X; Guo K; Li H; Du Z; Tian J
    Bioresour Technol; 2011 Feb; 102(3):3558-60. PubMed ID: 20888221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine aerobic biofilm as biocathode catalyst.
    Erable B; Vandecandelaere I; Faimali M; Delia ML; Etcheverry L; Vandamme P; Bergel A
    Bioelectrochemistry; 2010 Apr; 78(1):51-6. PubMed ID: 19643681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lowering the applied potential during successive scratching/re-inoculation improves the performance of microbial anodes for microbial fuel cells.
    Ketep SF; Bergel A; Bertrand M; Achouak W; Fourest E
    Bioresour Technol; 2013 Jan; 127():448-55. PubMed ID: 23138069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm.
    Erable B; Bergel A
    Bioresour Technol; 2009 Jul; 100(13):3302-7. PubMed ID: 19289272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities.
    Larrosa-Guerrero A; Scott K; Katuri KP; Godinez C; Head IM; Curtis T
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1699-713. PubMed ID: 20473665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microorganism-immobilized carbon nanoparticle anode for microbial fuel cells based on direct electron transfer.
    Yuan Y; Zhou S; Xu N; Zhuang L
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1629-35. PubMed ID: 21120470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells.
    Liu J; Qiao Y; Guo CX; Lim S; Song H; Li CM
    Bioresour Technol; 2012 Jun; 114():275-80. PubMed ID: 22483349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved energy output levels from small-scale Microbial Fuel Cells.
    Ieropoulos I; Greenman J; Melhuish C
    Bioelectrochemistry; 2010 Apr; 78(1):44-50. PubMed ID: 19540172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance.
    Picioreanu C; van Loosdrecht MC; Curtis TP; Scott K
    Bioelectrochemistry; 2010 Apr; 78(1):8-24. PubMed ID: 19523880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells.
    Pocaznoi D; Erable B; Etcheverry L; Delia ML; Bergel A
    Phys Chem Chem Phys; 2012 Oct; 14(38):13332-43. PubMed ID: 22932946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth.
    Strycharz-Glaven SM; Tender LM
    ChemSusChem; 2012 Jun; 5(6):1106-18. PubMed ID: 22581467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is resistance futile? Changing external resistance does not improve microbial fuel cell performance.
    Lyon DY; Buret F; Vogel TM; Monier JM
    Bioelectrochemistry; 2010 Apr; 78(1):2-7. PubMed ID: 19783225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On electron transport through Geobacter biofilms.
    Bond DR; Strycharz-Glaven SM; Tender LM; Torres CI
    ChemSusChem; 2012 Jun; 5(6):1099-105. PubMed ID: 22615023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
    Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE
    Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics.
    Cercado B; Byrne N; Bertrand M; Pocaznoi D; Rimboud M; Achouak W; Bergel A
    Bioresour Technol; 2013 Apr; 134():276-84. PubMed ID: 23500585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms.
    Salvin P; Roos C; Robert F
    Bioresour Technol; 2012 Sep; 120():45-51. PubMed ID: 22784952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utility of Shewanella japonica for microbial fuel cells.
    Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH
    Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.