These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22483440)

  • 1. The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water.
    Nkansah MA; Christy AA; Barth T; Francis GW
    J Hazard Mater; 2012 May; 217-218():360-5. PubMed ID: 22483440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings.
    Yaghi N; Hartikainen H
    Chemosphere; 2013 Nov; 93(9):1879-86. PubMed ID: 23866174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the adsorption capacity of the light-weight expanded clay aggregate surface for the metronidazole antibiotic by coating with MgO nanoparticles: Studies on the kinetic, isotherm, and effects of environmental parameters.
    Kalhori EM; Al-Musawi TJ; Ghahramani E; Kazemian H; Zarrabi M
    Chemosphere; 2017 May; 175():8-20. PubMed ID: 28211338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of PAHs from water using an immature coal (leonardite).
    Zeledón-Toruño ZC; Lao-Luque C; de Las Heras FX; Sole-Sardans M
    Chemosphere; 2007 Mar; 67(3):505-12. PubMed ID: 17109923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of Zn(II) in aqueous solutions by scoria.
    Kwon JS; Yun ST; Kim SO; Mayer B; Hutcheon I
    Chemosphere; 2005 Sep; 60(10):1416-26. PubMed ID: 16054911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran.
    Nouri L; Ghodbane I; Hamdaoui O; Chiha M
    J Hazard Mater; 2007 Oct; 149(1):115-25. PubMed ID: 17459582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay.
    Vieira MG; Neto AF; Gimenes ML; da Silva MG
    J Hazard Mater; 2010 May; 177(1-3):362-71. PubMed ID: 20042281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of a support matrix for the removal of some phenoxyacetic compounds in constructed wetlands systems.
    Dordio AV; Teimão J; Ramalho I; Carvalho AJ; Candeias AJ
    Sci Total Environ; 2007 Jul; 380(1-3):237-46. PubMed ID: 17379272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of sulfonated graphene sheets as sorbent for micro-solid-phase extraction combined with gas chromatography-mass spectrometry.
    Zhang H; Low WP; Lee HK
    J Chromatogr A; 2012 Apr; 1233():16-21. PubMed ID: 22402130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling for the evaluation of zinc removal efficiency on clay sorbent.
    Sarkar M; Sarkar AR; Goswami JL
    J Hazard Mater; 2007 Nov; 149(3):666-74. PubMed ID: 17532561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of dynamic sorption and desorption of polycyclic aromatic hydrocarbons in silty-clay soil.
    Yang L; Jin M; Tong C; Xie S
    J Hazard Mater; 2013 Jan; 244-245():77-85. PubMed ID: 23246943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid removal of cobalt ion from aqueous solutions by almond green hull.
    Ahmadpour A; Tahmasbi M; Bastami TR; Besharati JA
    J Hazard Mater; 2009 Jul; 166(2-3):925-30. PubMed ID: 19135786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies.
    Kumar E; Bhatnagar A; Kumar U; Sillanpää M
    J Hazard Mater; 2011 Feb; 186(2-3):1042-9. PubMed ID: 21177029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations.
    Akhtar M; Bhanger MI; Iqbal S; Hasany SM
    J Hazard Mater; 2006 Jan; 128(1):44-52. PubMed ID: 16126338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Governing factors for motor oil removal from water with different sorption materials.
    Rajaković-Ognjanović V; Aleksić G; Rajaković Lj
    J Hazard Mater; 2008 Jun; 154(1-3):558-63. PubMed ID: 18060689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient calix[4]arene based silica sorbent for the removal of endosulfan from water.
    Memon S; Memon N; Memon S; Latif Y
    J Hazard Mater; 2011 Feb; 186(2-3):1696-703. PubMed ID: 21216532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polycyclic aromatic hydrocarbons sorption on soils: some anomalous isotherms.
    Javier Rivas F; García de la Calle R; Alvarez P; Acedo B
    J Hazard Mater; 2008 Oct; 158(2-3):375-83. PubMed ID: 18321640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of trivalent chromium from water using low-cost natural diatomite.
    Gürü M; Venedik D; Murathan A
    J Hazard Mater; 2008 Dec; 160(2-3):318-23. PubMed ID: 18417281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drin pesticides removal from aqueous solutions using acid-treated date stones.
    El Bakouri H; Usero J; Morillo J; Rojas R; Ouassini A
    Bioresour Technol; 2009 May; 100(10):2676-84. PubMed ID: 19186054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced fluoride sorption by mechanochemically activated kaolinites.
    Meenakshi S; Sundaram CS; Sukumar R
    J Hazard Mater; 2008 May; 153(1-2):164-72. PubMed ID: 17897780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.