These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22483441)

  • 1. Chlorination of Microcystis aeruginosa suspension: cell lysis, toxin release and degradation.
    Ma M; Liu R; Liu H; Qu J
    J Hazard Mater; 2012 May; 217-218():279-85. PubMed ID: 22483441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorination of Microcystis aeruginosa: toxin release and oxidation, cellular chlorine demand and disinfection by-products formation.
    Zamyadi A; Fan Y; Daly RI; Prévost M
    Water Res; 2013 Mar; 47(3):1080-90. PubMed ID: 23245541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation.
    Daly RI; Ho L; Brookes JD
    Environ Sci Technol; 2007 Jun; 41(12):4447-53. PubMed ID: 17626450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of oxidant demand on the release and degradation of microcystin-LR from Microcystis aeruginosa during oxidation.
    Zhang H; Dan Y; Adams CD; Shi H; Ma Y; Eichholz T
    Chemosphere; 2017 Aug; 181():562-568. PubMed ID: 28463731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colonial cell disaggregation and intracellular microcystin release following chlorination of naturally occurring Microcystis.
    He X; Wert EC
    Water Res; 2016 Sep; 101():10-16. PubMed ID: 27240297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of potassium permanganate on cyanobacterial cell integrity and toxin release and degradation.
    Fan J; Daly R; Hobson P; Ho L; Brookes J
    Chemosphere; 2013 Jul; 92(5):529-34. PubMed ID: 23664445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis.
    Fan J; Rao L; Chiu YT; Lin TF
    Water Res; 2016 Oct; 102():394-404. PubMed ID: 27393964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing the effects of chlorination on membrane integrity and toxin fate of high- and low-viability cyanobacteria.
    Li X; Chen S; Zeng J; Song W; Yu X
    Water Res; 2020 Jun; 177():115769. PubMed ID: 32278164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of trichloromethane formation from two algae species during two pre-oxidation-coagulation-chlorination processes.
    Shi X; Bi R; Yuan B; Liao X; Zhou Z; Li F; Sun W
    Sci Total Environ; 2019 Mar; 656():1063-1070. PubMed ID: 30625638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination.
    Zamyadi A; Ho L; Newcombe G; Bustamante H; Prévost M
    Water Res; 2012 Apr; 46(5):1524-35. PubMed ID: 21820143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of various control and water treatment processes on the membrane integrity and toxin fate of cyanobacteria.
    Fan J; Hobson P; Ho L; Daly R; Brookes J
    J Hazard Mater; 2014 Jan; 264():313-22. PubMed ID: 24316803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Generation and release of Microcystin-lR by Microcystis aeruginosa under hydroquinone inhibition].
    Zhang YC; Liang WY; Zhao Y; Li FZ; Cao JC; Hu SJ
    Huan Jing Ke Xue; 2014 Jun; 35(6):2294-9. PubMed ID: 25158509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chlorine dioxide on cyanobacterial cell integrity, toxin degradation and disinfection by-product formation.
    Zhou S; Shao Y; Gao N; Li L; Deng J; Zhu M; Zhu S
    Sci Total Environ; 2014 Jun; 482-483():208-13. PubMed ID: 24651056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release and oxidation of cell-bound saxitoxins during chlorination of Anabaena circinalis cells.
    Zamyadi A; Ho L; Newcombe G; Daly RI; Burch M; Baker P; Prévost M
    Environ Sci Technol; 2010 Dec; 44(23):9055-61. PubMed ID: 21049989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of nitrobenzene on the yield of trihalomethane formation potential in aqueous solutions with Microcystis aeruginosa.
    Liu Z; Cui F; Ma H; Fan Z; Zhao Z
    Water Res; 2011 Dec; 45(19):6489-95. PubMed ID: 22001821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.
    Sun X; Yuan T; Ni H; Li Y; Hu Y
    J Environ Sci (China); 2016 Jul; 45():1-6. PubMed ID: 27372113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa.
    Fang J; Ma J; Yang X; Shang C
    Water Res; 2010 Mar; 44(6):1934-40. PubMed ID: 20060561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined impact of silver nanoparticles and chlorine on the cell integrity and toxin release of Microcystis aeruginosa.
    Singh A; Hou WC; Lin TF
    Chemosphere; 2021 Jun; 272():129825. PubMed ID: 35534960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter.
    Wang Z; Li J; Zhao J; Xing B
    Environ Sci Technol; 2011 Jul; 45(14):6032-40. PubMed ID: 21671609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous surface-adsorbed organic matter desorption and cell integrity maintenance by moderate prechlorination to enhance Microcystis aeruginosa removal in KMnO
    Qi J; Lan H; Liu H; Liu R; Miao S; Qu J
    Water Res; 2016 Nov; 105():551-558. PubMed ID: 27680409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.