BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22483786)

  • 41. Cardiac concentric hypertrophy promoted by activated Met receptor is mitigated in vivo by inhibition of Erk1,2 signalling with Pimasertib.
    Sala V; Gallo S; Gatti S; Medico E; Vigna E; Cantarella D; Fontani L; Natale M; Cimino J; Morello M; Comoglio PM; Ponzetto A; Crepaldi T
    J Mol Cell Cardiol; 2016 Apr; 93():84-97. PubMed ID: 26924269
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Signaling effectors underlying pathologic growth and remodeling of the heart.
    van Berlo JH; Maillet M; Molkentin JD
    J Clin Invest; 2013 Jan; 123(1):37-45. PubMed ID: 23281408
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Targeting cardiac hypertrophy: toward a causal heart failure therapy.
    Bisping E; Wakula P; Poteser M; Heinzel FR
    J Cardiovasc Pharmacol; 2014 Oct; 64(4):293-305. PubMed ID: 25286359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nischarin Is Not the Functional I1 Imidazoline Receptor Involved in Blood Pressure Regulation.
    Arnoux A; Aubertin G; Da Silva S; Weiss M; Bousquet P; Monassier L; Niederhoffer N
    J Cardiovasc Pharmacol; 2022 Feb; 79(2):229-234. PubMed ID: 35485584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MicroRNAs in heart failure: new targets in disease management.
    Elzenaar I; Pinto YM; van Oort RJ
    Clin Pharmacol Ther; 2013 Oct; 94(4):480-9. PubMed ID: 23852395
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nischarin regulates focal adhesion and Invadopodia formation in breast cancer cells.
    Maziveyi M; Dong S; Baranwal S; Alahari SK
    Mol Cancer; 2018 Feb; 17(1):21. PubMed ID: 29415725
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Canavanine induces insulin release via activation of imidazoline I3 receptors.
    Yang TT; Niu HS; Chen LJ; Ku PM; Lin KC; Cheng JT
    Clin Exp Pharmacol Physiol; 2015 Mar; 42(3):263-8. PubMed ID: 25482045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diurnal physiology: core principles with application to the pathogenesis, diagnosis, prevention, and treatment of myocardial hypertrophy and failure.
    Sole MJ; Martino TA
    J Appl Physiol (1985); 2009 Oct; 107(4):1318-27. PubMed ID: 19556457
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeting transcriptional machinery to inhibit enhancer-driven gene expression in heart failure.
    Minerath RA; Hall DD; Grueter CE
    Heart Fail Rev; 2019 Sep; 24(5):725-741. PubMed ID: 30972522
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of epoxyeicosatrienoic acids to improve cardiac remodeling in chronic renal failure disease.
    Zhang K; Wang J; Zhang H; Chen J; Zuo Z; Wang J; Huang H
    Eur J Pharmacol; 2013 Feb; 701(1-3):33-9. PubMed ID: 23313758
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Molecular determinants of pathological cardiac remodeling: the examples of Epac and Carabin].
    Sainte-Marie Y; Bisserier M; Tortosa F; Lezoualc'h F
    Med Sci (Paris); 2015 Oct; 31(10):881-8. PubMed ID: 26481027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential treatment of cardiac hypertrophy and heart failure by inhibiting the sarcolemmal binding of phospholipase Cbeta1b.
    Woodcock EA; Grubb DR; Iliades P
    Curr Drug Targets; 2010 Aug; 11(8):1032-40. PubMed ID: 20426766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tackling the EGFR in pathological tissue remodelling.
    Chan HW; Smith NJ; Hannan RD; Thomas WG
    Pulm Pharmacol Ther; 2006; 19(1):74-8. PubMed ID: 15979363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RASSF1A: a potential novel therapeutic target against cardiac hypertrophy.
    Duan C; Liu M; Zhang J; Ma R
    Prog Biophys Mol Biol; 2013 Nov; 113(2):284-8. PubMed ID: 23891964
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of the specificity of imidazoline I-1 receptor antibody for subtype of imidazoline receptors in vitro.
    Wang LY; Ku PM; Chen SH; Chen LJ; Yu YM; Cheng JT
    Horm Metab Res; 2013 Jul; 45(7):485-9. PubMed ID: 23430592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Insights into innate immune signalling in controlling cardiac remodelling.
    Zhang Y; Huang Z; Li H
    Cardiovasc Res; 2017 Nov; 113(13):1538-1550. PubMed ID: 29088374
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Myocyte autophagy in heart disease: friend or foe?
    Rothermel BA; Hill JA
    Autophagy; 2007; 3(6):632-4. PubMed ID: 17786025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reversal of cardiac remodeling by modulation of adrenergic receptors: a new frontier in heart failure.
    Perrino C; Rockman HA
    Curr Opin Cardiol; 2007 Sep; 22(5):443-9. PubMed ID: 17762546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. IRAS is an anti-apoptotic protein.
    Dontenwill M; Piletz JE; Chen M; Baldwin J; Pascal G; Ronde P; Dupuy L; Greney H; Takeda K; Bousquetd P
    Ann N Y Acad Sci; 2003 Dec; 1009():400-12. PubMed ID: 15028619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Studies of prevention, treatment and mechanisms of heart failure in the aging spontaneously hypertensive rat.
    Bing OH; Conrad CH; Boluyt MO; Robinson KG; Brooks WW
    Heart Fail Rev; 2002 Jan; 7(1):71-88. PubMed ID: 11790924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.