These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
473 related articles for article (PubMed ID: 22483865)
21. Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Masani S; Han L; Yu K Mol Cell Biol; 2013 Apr; 33(7):1468-73. PubMed ID: 23382073 [TBL] [Abstract][Full Text] [Related]
22. DNA polymerase beta is able to repair breaks in switch regions and plays an inhibitory role during immunoglobulin class switch recombination. Wu X; Stavnezer J J Exp Med; 2007 Jul; 204(7):1677-89. PubMed ID: 17591858 [TBL] [Abstract][Full Text] [Related]
23. Uracil-DNA glycosylase in base excision repair and adaptive immunity: species differences between man and mouse. Doseth B; Visnes T; Wallenius A; Ericsson I; Sarno A; Pettersen HS; Flatberg A; Catterall T; Slupphaug G; Krokan HE; Kavli B J Biol Chem; 2011 May; 286(19):16669-80. PubMed ID: 21454529 [TBL] [Abstract][Full Text] [Related]
24. Human ribosomal protein S3 (hRpS3) interacts with uracil-DNA glycosylase (hUNG) and stimulates its glycosylase activity. Ko SI; Park JH; Park MJ; Kim J; Kang LW; Han YS Mutat Res; 2008 Dec; 648(1-2):54-64. PubMed ID: 18973764 [TBL] [Abstract][Full Text] [Related]
25. Action mechanism of human SMUG1 uracil-DNA glycosylase. Matsubara M; Tanaka T; Terato H; Ide H Nucleic Acids Symp Ser (Oxf); 2005; (49):295-6. PubMed ID: 17150750 [TBL] [Abstract][Full Text] [Related]
26. Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. Peña-Diaz J; Akbari M; Sundheim O; Farez-Vidal ME; Andersen S; Sneve R; Gonzalez-Pacanowska D; Krokan HE; Slupphaug G J Mol Biol; 2004 Sep; 342(3):787-99. PubMed ID: 15342237 [TBL] [Abstract][Full Text] [Related]
27. Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2. Thientosapol ES; Sharbeen G; Lau KKE; Bosnjak D; Durack T; Stevanovski I; Weninger W; Jolly CJ Nucleic Acids Res; 2017 Apr; 45(6):3146-3157. PubMed ID: 28039326 [TBL] [Abstract][Full Text] [Related]
28. Uracil in DNA and its processing by different DNA glycosylases. Visnes T; Doseth B; Pettersen HS; Hagen L; Sousa MM; Akbari M; Otterlei M; Kavli B; Slupphaug G; Krokan HE Philos Trans R Soc Lond B Biol Sci; 2009 Mar; 364(1517):563-8. PubMed ID: 19008197 [TBL] [Abstract][Full Text] [Related]
29. Excision of uracil from transcribed DNA negatively affects gene expression. Lühnsdorf B; Epe B; Khobta A J Biol Chem; 2014 Aug; 289(32):22008-18. PubMed ID: 24951587 [TBL] [Abstract][Full Text] [Related]
30. mtSSB may sequester UNG1 at mitochondrial ssDNA and delay uracil processing until the dsDNA conformation is restored. Wollen Steen K; Doseth B; P Westbye M; Akbari M; Kang D; Falkenberg M; Slupphaug G DNA Repair (Amst); 2012 Jan; 11(1):82-91. PubMed ID: 22153281 [TBL] [Abstract][Full Text] [Related]
31. Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Pilzecker B; Jacobs H Front Immunol; 2019; 10():438. PubMed ID: 30915081 [TBL] [Abstract][Full Text] [Related]
32. Expression and recruitment of uracil-DNA glycosylase are regulated by E2A during antibody diversification. Wallenius A; Hauser J; Aas PA; Sarno A; Kavli B; Krokan HE; Grundström T Mol Immunol; 2014 Jul; 60(1):23-31. PubMed ID: 24747958 [TBL] [Abstract][Full Text] [Related]
33. MRE11/RAD50 cleaves DNA in the AID/UNG-dependent pathway of immunoglobulin gene diversification. Larson ED; Cummings WJ; Bednarski DW; Maizels N Mol Cell; 2005 Nov; 20(3):367-75. PubMed ID: 16285919 [TBL] [Abstract][Full Text] [Related]
34. Insights from xanthine and uracil DNA glycosylase activities of bacterial and human SMUG1: switching SMUG1 to UDG. Mi R; Dong L; Kaulgud T; Hackett KW; Dominy BN; Cao W J Mol Biol; 2009 Jan; 385(3):761-78. PubMed ID: 18835277 [TBL] [Abstract][Full Text] [Related]
35. Analysis of Ig gene hypermutation in Ung(-/-)Polh(-/-) mice suggests that UNG and A:T mutagenesis pathway target different U:G lesions. Li S; Zhao Y; Wang JY Mol Immunol; 2013 Mar; 53(3):214-7. PubMed ID: 22960197 [TBL] [Abstract][Full Text] [Related]
36. Refining the Neuberger model: Uracil processing by activated B cells. Maul RW; Gearhart PJ Eur J Immunol; 2014 Jul; 44(7):1913-6. PubMed ID: 24920531 [TBL] [Abstract][Full Text] [Related]
37. RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork. Kavli B; Iveland TS; Buchinger E; Hagen L; Liabakk NB; Aas PA; Obermann TS; Aachmann FL; Slupphaug G Nucleic Acids Res; 2021 Apr; 49(7):3948-3966. PubMed ID: 33784377 [TBL] [Abstract][Full Text] [Related]
38. Strand-biased cytosine deamination at the replication fork causes cytosine to thymine mutations in Escherichia coli. Bhagwat AS; Hao W; Townes JP; Lee H; Tang H; Foster PL Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2176-81. PubMed ID: 26839411 [TBL] [Abstract][Full Text] [Related]
39. Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination. Bregenhorn S; Kallenberger L; Artola-Borán M; Peña-Diaz J; Jiricny J Nucleic Acids Res; 2016 Apr; 44(6):2691-705. PubMed ID: 26743004 [TBL] [Abstract][Full Text] [Related]
40. The contested role of uracil DNA glycosylase in immunoglobulin gene diversification. Longerich S; Storb U Trends Genet; 2005 May; 21(5):253-6. PubMed ID: 15851057 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]