These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Rev1 is essential in generating G to C transversions downstream of the Ung2 pathway but not the Msh2+Ung2 hybrid pathway. Krijger PH; Tsaalbi-Shtylik A; Wit N; van den Berk PC; de Wind N; Jacobs H Eur J Immunol; 2013 Oct; 43(10):2765-70. PubMed ID: 23857323 [TBL] [Abstract][Full Text] [Related]
43. Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase. Matsubara M; Tanaka T; Terato H; Ohmae E; Izumi S; Katayanagi K; Ide H Nucleic Acids Res; 2004; 32(17):5291-302. PubMed ID: 15466595 [TBL] [Abstract][Full Text] [Related]
44. Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA. Yang B; Chen K; Zhang C; Huang S; Zhang H J Biol Chem; 2007 Apr; 282(16):11667-75. PubMed ID: 17272283 [TBL] [Abstract][Full Text] [Related]
45. Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease. Shatilla A; Ramotar D Biochem J; 2002 Jul; 365(Pt 2):547-53. PubMed ID: 11966472 [TBL] [Abstract][Full Text] [Related]
46. A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase. Gallinari P; Jiricny J Nature; 1996 Oct; 383(6602):735-8. PubMed ID: 8878487 [TBL] [Abstract][Full Text] [Related]
47. Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2. Hardeland U; Kunz C; Focke F; Szadkowski M; Schär P Nucleic Acids Res; 2007; 35(11):3859-67. PubMed ID: 17526518 [TBL] [Abstract][Full Text] [Related]
48. Two levels of protection for the B cell genome during somatic hypermutation. Liu M; Duke JL; Richter DJ; Vinuesa CG; Goodnow CC; Kleinstein SH; Schatz DG Nature; 2008 Feb; 451(7180):841-5. PubMed ID: 18273020 [TBL] [Abstract][Full Text] [Related]
49. Assay design for analysis of human uracil DNA glycosylase. Kulkarni RS; Greenwood SN; Weiser BP Methods Enzymol; 2023; 679():343-362. PubMed ID: 36682870 [TBL] [Abstract][Full Text] [Related]
50. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Di Noia J; Neuberger MS Nature; 2002 Sep; 419(6902):43-8. PubMed ID: 12214226 [TBL] [Abstract][Full Text] [Related]
51. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Chaudhuri J; Tian M; Khuong C; Chua K; Pinaud E; Alt FW Nature; 2003 Apr; 422(6933):726-30. PubMed ID: 12692563 [TBL] [Abstract][Full Text] [Related]
52. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Imai K; Slupphaug G; Lee WI; Revy P; Nonoyama S; Catalan N; Yel L; Forveille M; Kavli B; Krokan HE; Ochs HD; Fischer A; Durandy A Nat Immunol; 2003 Oct; 4(10):1023-8. PubMed ID: 12958596 [TBL] [Abstract][Full Text] [Related]
53. The Multiple Cellular Roles of SMUG1 in Genome Maintenance and Cancer. Raja S; Van Houten B Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671338 [TBL] [Abstract][Full Text] [Related]
54. Analysis of uracil DNA glycosylase (UNG2) stimulation by replication protein A (RPA) at ssDNA-dsDNA junctions. Weiser BP Biochim Biophys Acta Proteins Proteom; 2020 Mar; 1868(3):140347. PubMed ID: 31866506 [TBL] [Abstract][Full Text] [Related]
55. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. Kubota Y; Nash RA; Klungland A; Schär P; Barnes DE; Lindahl T EMBO J; 1996 Dec; 15(23):6662-70. PubMed ID: 8978692 [TBL] [Abstract][Full Text] [Related]
56. Fam72a enforces error-prone DNA repair during antibody diversification. Rogier M; Moritz J; Robert I; Lescale C; Heyer V; Abello A; Martin O; Capitani K; Thomas M; Thomas-Claudepierre AS; Laffleur B; Jouan F; Pinaud E; Tarte K; Cogné M; Conticello SG; Soutoglou E; Deriano L; Reina-San-Martin B Nature; 2021 Dec; 600(7888):329-333. PubMed ID: 34819671 [TBL] [Abstract][Full Text] [Related]
57. Properties and functions of human uracil-DNA glycosylase from the UNG gene. Krokan HE; Otterlei M; Nilsen H; Kavli B; Skorpen F; Andersen S; Skjelbred C; Akbari M; Aas PA; Slupphaug G Prog Nucleic Acid Res Mol Biol; 2001; 68():365-86. PubMed ID: 11554311 [TBL] [Abstract][Full Text] [Related]
58. Intrinsic Strand-Incision Activity of Human UNG: Implications for Nick Generation in Immunoglobulin Gene Diversification. Alexeeva M; Moen MN; Xu XM; Rasmussen A; Leiros I; Kirpekar F; Klungland A; Alsøe L; Nilsen H; Bjelland S Front Immunol; 2021; 12():762032. PubMed ID: 35003074 [TBL] [Abstract][Full Text] [Related]
59. UNG shapes the specificity of AID-induced somatic hypermutation. Pérez-Durán P; Belver L; de Yébenes VG; Delgado P; Pisano DG; Ramiro AR J Exp Med; 2012 Jul; 209(7):1379-89. PubMed ID: 22665573 [TBL] [Abstract][Full Text] [Related]
60. The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Lu X; Bocangel D; Nannenga B; Yamaguchi H; Appella E; Donehower LA Mol Cell; 2004 Aug; 15(4):621-34. PubMed ID: 15327777 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]