These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 22483866)
1. The conserved Cockayne syndrome B-piggyBac fusion protein (CSB-PGBD3) affects DNA repair and induces both interferon-like and innate antiviral responses in CSB-null cells. Bailey AD; Gray LT; Pavelitz T; Newman JC; Horibata K; Tanaka K; Weiner AM DNA Repair (Amst); 2012 May; 11(5):488-501. PubMed ID: 22483866 [TBL] [Abstract][Full Text] [Related]
2. Tethering of the conserved piggyBac transposase fusion protein CSB-PGBD3 to chromosomal AP-1 proteins regulates expression of nearby genes in humans. Gray LT; Fong KK; Pavelitz T; Weiner AM PLoS Genet; 2012 Sep; 8(9):e1002972. PubMed ID: 23028371 [TBL] [Abstract][Full Text] [Related]
3. What role (if any) does the highly conserved CSB-PGBD3 fusion protein play in Cockayne syndrome? Weiner AM; Gray LT Mech Ageing Dev; 2013; 134(5-6):225-33. PubMed ID: 23369858 [TBL] [Abstract][Full Text] [Related]
4. An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome. Newman JC; Bailey AD; Fan HY; Pavelitz T; Weiner AM PLoS Genet; 2008 Mar; 4(3):e1000031. PubMed ID: 18369450 [TBL] [Abstract][Full Text] [Related]
6. Generation of splice switching oligonucleotides targeting the Cockayne syndrome group B gene product in order to change the diseased cell state. Sin Y; Makimura F; Saijo M; Obika S Biochem Biophys Res Commun; 2018 Jun; 500(2):163-169. PubMed ID: 29625109 [TBL] [Abstract][Full Text] [Related]
7. Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells. Selzer RR; Nyaga S; Tuo J; May A; Muftuoglu M; Christiansen M; Citterio E; Brosh RM; Bohr VA Nucleic Acids Res; 2002 Feb; 30(3):782-93. PubMed ID: 11809892 [TBL] [Abstract][Full Text] [Related]
8. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Kristensen U; Epanchintsev A; Rauschendorf MA; Laugel V; Stevnsner T; Bohr VA; Coin F; Egly JM Proc Natl Acad Sci U S A; 2013 Jun; 110(25):E2261-70. PubMed ID: 23733932 [TBL] [Abstract][Full Text] [Related]
9. The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. Brosh RM; Balajee AS; Selzer RR; Sunesen M; Proietti De Santis L; Bohr VA Mol Biol Cell; 1999 Nov; 10(11):3583-94. PubMed ID: 10564257 [TBL] [Abstract][Full Text] [Related]
10. The C-terminal Region and SUMOylation of Cockayne Syndrome Group B Protein Play Critical Roles in Transcription-coupled Nucleotide Excision Repair. Sin Y; Tanaka K; Saijo M J Biol Chem; 2016 Jan; 291(3):1387-97. PubMed ID: 26620705 [TBL] [Abstract][Full Text] [Related]
11. Novel missense mutations in a conserved loop between ERCC6 (CSB) helicase motifs V and VI: Insights into Cockayne syndrome. Wilson BT; Lochan A; Stark Z; Sutton RE Am J Med Genet A; 2016 Mar; 170(3):773-6. PubMed ID: 26749132 [TBL] [Abstract][Full Text] [Related]
12. Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease. Wang Y; Chakravarty P; Ranes M; Kelly G; Brooks PJ; Neilan E; Stewart A; Schiavo G; Svejstrup JQ Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14454-9. PubMed ID: 25249633 [TBL] [Abstract][Full Text] [Related]
13. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Citterio E; Van Den Boom V; Schnitzler G; Kanaar R; Bonte E; Kingston RE; Hoeijmakers JH; Vermeulen W Mol Cell Biol; 2000 Oct; 20(20):7643-53. PubMed ID: 11003660 [TBL] [Abstract][Full Text] [Related]
14. Cockayne Syndrome Group B (CSB): The Regulatory Framework Governing the Multifunctional Protein and Its Plausible Role in Cancer. Spyropoulou Z; Papaspyropoulos A; Lagopati N; Myrianthopoulos V; Georgakilas AG; Fousteri M; Kotsinas A; Gorgoulis VG Cells; 2021 Apr; 10(4):. PubMed ID: 33920220 [TBL] [Abstract][Full Text] [Related]
15. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Anindya R; Mari PO; Kristensen U; Kool H; Giglia-Mari G; Mullenders LH; Fousteri M; Vermeulen W; Egly JM; Svejstrup JQ Mol Cell; 2010 Jun; 38(5):637-48. PubMed ID: 20541997 [TBL] [Abstract][Full Text] [Related]
16. Structural basis of ubiquitin recognition by the winged-helix domain of Cockayne syndrome group B protein. Takahashi TS; Sato Y; Yamagata A; Goto-Ito S; Saijo M; Fukai S Nucleic Acids Res; 2019 Apr; 47(7):3784-3794. PubMed ID: 30753618 [TBL] [Abstract][Full Text] [Related]
17. Phenotypic consequences of mutations in the conserved motifs of the putative helicase domain of the human Cockayne syndrome group B gene. Muftuoglu M; Selzer R; Tuo J; Brosh RM; Bohr VA Gene; 2002 Jan; 283(1-2):27-40. PubMed ID: 11867210 [TBL] [Abstract][Full Text] [Related]
18. CSB promoter downregulation via histone H3 hypoacetylation is an early determinant of replicative senescence. Crochemore C; Fernández-Molina C; Montagne B; Salles A; Ricchetti M Nat Commun; 2019 Dec; 10(1):5576. PubMed ID: 31811121 [TBL] [Abstract][Full Text] [Related]
19. Early host cell reactivation of an oxidatively damaged adenovirus-encoded reporter gene requires the Cockayne syndrome proteins CSA and CSB. Leach DM; Rainbow AJ Mutagenesis; 2011 Mar; 26(2):315-21. PubMed ID: 21059811 [TBL] [Abstract][Full Text] [Related]
20. Poly(ADP-ribose) polymerase 1 (PARP1) promotes oxidative stress-induced association of Cockayne syndrome group B protein with chromatin. Boetefuer EL; Lake RJ; Dreval K; Fan HY J Biol Chem; 2018 Nov; 293(46):17863-17874. PubMed ID: 30266807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]