These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22484052)

  • 1. In situ TEM nanoindentation of nanoparticles.
    Carlton CE; Ferreira PJ
    Micron; 2012 Nov; 43(11):1134-9. PubMed ID: 22484052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TEM-nanoindentation studies of semiconducting structures.
    Le Bourhis E; Patriarche G
    Micron; 2007; 38(4):377-89. PubMed ID: 16901706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A global investigation into in situ nanoindentation experiments on zirconia: from the sample geometry optimization to the stress nanolocalization using convergent beam electron diffraction.
    Calvié E; Joly-Pottuz L; Esnouf C; Douillard T; Gremillard L; Malchère A; Masenelli-Varlot K
    J Microsc; 2013 Feb; 249(2):99-110. PubMed ID: 23176730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation.
    Wang B; Zhang Z; Cui J; Jiang N; Lyu J; Chen G; Wang J; Liu Z; Yu J; Lin C; Ye F; Guo D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29451-29456. PubMed ID: 28829563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ indentation of nanoporous gold thin films in the transmission electron microscope.
    Sun Y; Ye J; Minor AM; Balk TJ
    Microsc Res Tech; 2009 Mar; 72(3):232-41. PubMed ID: 19165734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-deformation evolutions of the constituent phases in duplex stainless steel during cyclic nanoindentation.
    Cui YY; Jia YF; Xuan FZ
    Sci Rep; 2018 Apr; 8(1):6199. PubMed ID: 29670162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward monodispersed silver nanoparticles with unusual thermal stability.
    Sun J; Ma D; Zhang H; Liu X; Han X; Bao X; Weinberg G; Pfänder N; Su D
    J Am Chem Soc; 2006 Dec; 128(49):15756-64. PubMed ID: 17147385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in situ nanoindentation specimen holder for a high voltage transmission electron microscope.
    Wall MA; Dahmen U
    Microsc Res Tech; 1998 Aug; 42(4):248-54. PubMed ID: 9779829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study.
    Haque MA; Saif MT
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6335-40. PubMed ID: 15084745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green synthesis of silver nanoparticles using Macrotyloma uniflorum.
    Vidhu VK; Aromal SA; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):392-7. PubMed ID: 21920808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ approach induced growth of highly monodispersed Ag nanoparticles within free standing PVA/PVP films.
    Eisa WH; Abdel-Moneam YK; Shabaka AA; Hosam AE
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():341-6. PubMed ID: 22542688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film.
    Ghosh S; Kaushik R; Nagalakshmi K; Hoti SL; Menezes GA; Harish BN; Vasan HN
    Carbohydr Res; 2010 Oct; 345(15):2220-7. PubMed ID: 20800222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles.
    Philip D; Unni C; Aromal SA; Vidhu VK
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):899-904. PubMed ID: 21215687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and subdivision of deformation structures during plastic deformation.
    Jakobsen B; Poulsen HF; Lienert U; Almer J; Shastri SD; Sørensen HO; Gundlach C; Pantleon W
    Science; 2006 May; 312(5775):889-92. PubMed ID: 16690859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical growth and photochromism of silver nanoparticles into a mesoporous titania template.
    Bois L; Chassagneux F; Battie Y; Bessueille F; Mollet L; Parola S; Destouches N; Toulhoat N; Moncoffre N
    Langmuir; 2010 Jan; 26(2):1199-206. PubMed ID: 20067316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of phenol derivatives in the formation of silver nanoparticles.
    Jacob JA; Mahal HS; Biswas N; Mukherjee T; Kapoor S
    Langmuir; 2008 Jan; 24(2):528-33. PubMed ID: 18095719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ionic surfactants on the morphology of silver nanoparticles using Paan (Piper betel) leaf petiole extract.
    Khan Z; Bashir O; Hussain JI; Kumar S; Ahmad R
    Colloids Surf B Biointerfaces; 2012 Oct; 98():85-90. PubMed ID: 22652360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil.
    Ahmad N; Sharma S; Alam MK; Singh VN; Shamsi SF; Mehta BR; Fatma A
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):81-6. PubMed ID: 20656463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.
    Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in situ real-time x-ray diffraction study of phase segregation in Au-Pt nanoparticles.
    Malis O; Radu M; Mott D; Wanjala B; Luo J; Zhong CJ
    Nanotechnology; 2009 Jun; 20(24):245708. PubMed ID: 19471088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.