These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22484238)

  • 1. Crystal structure of a mono- and diacylglycerol lipase from Malassezia globosa reveals a novel lid conformation and insights into the substrate specificity.
    Xu T; Liu L; Hou S; Xu J; Yang B; Wang Y; Liu J
    J Struct Biol; 2012 Jun; 178(3):363-9. PubMed ID: 22484238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for substrate selectivity of a mono- and diacylglycerol lipase from Malassezia globosa.
    Liu L; Gao C; Lan D; Yang B; Wang Y
    Biochem Biophys Res Commun; 2012 Jul; 424(2):285-9. PubMed ID: 22750000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of a Mono- and Diacylglycerol Lipase into a Triacylglycerol Lipase by Protein Engineering.
    Lan D; Popowicz GM; Pavlidis IV; Zhou P; Bornscheuer UT; Wang Y
    Chembiochem; 2015 Jul; 16(10):1431-4. PubMed ID: 25955297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Residues 103, 104, and 278 in the Activity of SMG1 Lipase from Malassezia globosa: A Site-Directed Mutagenesis Study.
    Lan D; Wang Q; Popowicz GM; Yang B; Tang Q; Wang Y
    J Microbiol Biotechnol; 2015 Nov; 25(11):1827-34. PubMed ID: 26239010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of product-bound SMG1 lipase: active site gating implications.
    Guo S; Xu J; Pavlidis IV; Lan D; Bornscheuer UT; Liu J; Wang Y
    FEBS J; 2015 Dec; 282(23):4538-47. PubMed ID: 26365206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residue Asn277 affects the stability and substrate specificity of the SMG1 lipase from Malassezia globosa.
    Lan D; Wang Q; Xu J; Zhou P; Yang B; Wang Y
    Int J Mol Sci; 2015 Mar; 16(4):7273-88. PubMed ID: 25837472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical properties of a new cold-active mono- and diacylglycerol lipase from marine member Janibacter sp. strain HTCC2649.
    Yuan D; Lan D; Xin R; Yang B; Wang Y
    Int J Mol Sci; 2014 Jun; 15(6):10554-66. PubMed ID: 24927145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lid mobility in lipase SMG1 validated using a thiol/disulfide redox potential probe.
    Guo S; Popowicz GM; Li D; Yuan D; Wang Y
    FEBS Open Bio; 2016 May; 6(5):477-83. PubMed ID: 27419053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis studies of the aromatic residues at the active site of a lipase from Malassezia globosa.
    Gao C; Lan D; Liu L; Zhang H; Yang B; Wang Y
    Biochimie; 2014 Jul; 102():29-36. PubMed ID: 24556587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malassezia globosa MgMDL2 lipase: Crystal structure and rational modification of substrate specificity.
    Lan D; Xu H; Xu J; Dubin G; Liu J; Iqbal Khan F; Wang Y
    Biochem Biophys Res Commun; 2017 Jun; 488(2):259-265. PubMed ID: 28433636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structural model of mono- and diacylglycerol lipase from Penicillium camembertii.
    Isobe K; Aumann KD; Schmid RD
    J Biotechnol; 1994 Jan; 32(1):83-8. PubMed ID: 7764452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding.
    Chen CK; Lee GC; Ko TP; Guo RT; Huang LM; Liu HJ; Ho YF; Shaw JF; Wang AH
    J Mol Biol; 2009 Jul; 390(4):672-85. PubMed ID: 19447113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel inhibitor against Malassezia globosa LIP1 (SMG1), a potential anti-dandruff target.
    Guo S; Huang W; Zhang J; Wang Y
    Bioorg Med Chem Lett; 2015 Sep; 25(17):3464-7. PubMed ID: 26199121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical properties and structure analysis of a DAG-Like lipase from Malassezia globosa.
    Xu H; Lan D; Yang B; Wang Y
    Int J Mol Sci; 2015 Mar; 16(3):4865-79. PubMed ID: 25749469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor.
    Kim KK; Song HK; Shin DH; Hwang KY; Suh SW
    Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Conformational Changes and Interfacial Recognition Site of Lipases With Surfactants and Inhibitors.
    Mateos-Diaz E; Amara S; Roussel A; Longhi S; Cambillau C; Carrière F
    Methods Enzymol; 2017; 583():279-307. PubMed ID: 28063495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of lipases from Malassezia restricta, a causative agent of dandruff.
    Sommer B; Overy DP; Kerr RG
    FEMS Yeast Res; 2015 Nov; 15(7):. PubMed ID: 26298017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding.
    Moore SA; Kingston RL; Loomes KM; Hernell O; Bläckberg L; Baker HM; Baker EN
    J Mol Biol; 2001 Sep; 312(3):511-23. PubMed ID: 11563913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.
    Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I
    Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase.
    Trodler P; Schmid RD; Pleiss J
    BMC Struct Biol; 2009 May; 9():38. PubMed ID: 19476626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.