BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

811 related articles for article (PubMed ID: 22484697)

  • 1. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels.
    He S; Xia T; Wang H; Wei L; Luo X; Li X
    Acta Biomater; 2012 Jul; 8(7):2659-69. PubMed ID: 22484697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoted regeneration of mature blood vessels by electrospun fibers with loaded multiple pDNA-calcium phosphate nanoparticles.
    Chen F; Wan H; Xia T; Guo X; Wang H; Liu Y; Li X
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):699-710. PubMed ID: 23891771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor.
    Yang Y; Xia T; Zhi W; Wei L; Weng J; Zhang C; Li X
    Biomaterials; 2011 Jun; 32(18):4243-54. PubMed ID: 21402405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats.
    Yang Y; Xia T; Chen F; Wei W; Liu C; He S; Li X
    Mol Pharm; 2012 Jan; 9(1):48-58. PubMed ID: 22091745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds.
    Yang Y; Li X; Cheng L; He S; Zou J; Chen F; Zhang Z
    Acta Biomater; 2011 Jun; 7(6):2533-43. PubMed ID: 21345386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrosprayed microparticles with loaded pDNA-calcium phosphate nanoparticles to promote the regeneration of mature blood vessels.
    Guo X; Xia T; Wang H; Chen F; Cheng R; Luo X; Li X
    Pharm Res; 2014 Apr; 31(4):874-86. PubMed ID: 24065597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF.
    Nillesen ST; Geutjes PJ; Wismans R; Schalkwijk J; Daamen WF; van Kuppevelt TH
    Biomaterials; 2007 Feb; 28(6):1123-31. PubMed ID: 17113636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
    Nie H; Wang CH
    J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size.
    Mathews A; Colombus S; Krishnan VK; Krishnan LK
    J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor.
    Li W; Lan Y; Guo R; Zhang Y; Xue W; Zhang Y
    J Biomater Appl; 2015 Jan; 29(6):882-93. PubMed ID: 25114196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced angiogenic efficacy through controlled and sustained delivery of FGF-2 and G-CSF from fibrin hydrogels containing ionic-albumin microspheres.
    Layman H; Li X; Nagar E; Vial X; Pham SM; Andreopoulos FM
    J Biomater Sci Polym Ed; 2012; 23(1-4):185-206. PubMed ID: 21192837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents.
    Guo R; Xu S; Ma L; Huang A; Gao C
    Biomaterials; 2011 Feb; 32(4):1019-31. PubMed ID: 21071076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering.
    Du F; Wang H; Zhao W; Li D; Kong D; Yang J; Zhang Y
    Biomaterials; 2012 Jan; 33(3):762-70. PubMed ID: 22056285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering.
    Li H; Liu Y; Lu J; Wei J; Li X
    J Biomed Mater Res A; 2015 Jun; 103(6):1949-60. PubMed ID: 25204306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue response to poly(ether)urethane-polydimethylsiloxane-fibrin composite scaffolds for controlled delivery of pro-angiogenic growth factors.
    Losi P; Briganti E; Magera A; Spiller D; Ristori C; Battolla B; Balderi M; Kull S; Balbarini A; Di Stefano R; Soldani G
    Biomaterials; 2010 Jul; 31(20):5336-44. PubMed ID: 20381861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres.
    Perets A; Baruch Y; Weisbuch F; Shoshany G; Neufeld G; Cohen S
    J Biomed Mater Res A; 2003 Jun; 65(4):489-97. PubMed ID: 12761840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun fibrous scaffolds with continuous gradations in mineral contents and biological cues for manipulating cellular behaviors.
    Zou B; Liu Y; Luo X; Chen F; Guo X; Li X
    Acta Biomater; 2012 Apr; 8(4):1576-85. PubMed ID: 22266030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165).
    Keeney M; van den Beucken JJ; van der Kraan PM; Jansen JA; Pandit A
    Biomaterials; 2010 Apr; 31(10):2893-902. PubMed ID: 20044134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering blood vessels through micropatterned co-culture of vascular endothelial and smooth muscle cells on bilayered electrospun fibrous mats with pDNA inoculation.
    Liu Y; Lu J; Li H; Wei J; Li X
    Acta Biomater; 2015 Jan; 11():114-25. PubMed ID: 25305234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.