These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 22484848)

  • 1. Genome-scale promoter engineering by coselection MAGE.
    Wang HH; Kim H; Cong L; Jeong J; Bang D; Church GM
    Nat Methods; 2012 Jun; 9(6):591-3. PubMed ID: 22484848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides.
    Bonde MT; Kosuri S; Genee HJ; Sarup-Lytzen K; Church GM; Sommer MO; Wang HH
    ACS Synth Biol; 2015 Jan; 4(1):17-22. PubMed ID: 24856730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-input regulation and logic with T7 promoters in cells and cell-free systems.
    Iyer S; Karig DK; Norred SE; Simpson ML; Doktycz MJ
    PLoS One; 2013; 8(10):e78442. PubMed ID: 24194933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA.
    Gallagher RR; Li Z; Lewis AO; Isaacs FJ
    Nat Protoc; 2014 Oct; 9(10):2301-16. PubMed ID: 25188632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Merlin: Computer-Aided Oligonucleotide Design for Large Scale Genome Engineering with MAGE.
    Quintin M; Ma NJ; Ahmed S; Bhatia S; Lewis A; Isaacs FJ; Densmore D
    ACS Synth Biol; 2016 Jun; 5(6):452-8. PubMed ID: 27054880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection.
    Carr PA; Wang HH; Sterling B; Isaacs FJ; Lajoie MJ; Xu G; Church GM; Jacobson JM
    Nucleic Acids Res; 2012 Sep; 40(17):e132. PubMed ID: 22638574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programming cells by multiplex genome engineering and accelerated evolution.
    Wang HH; Isaacs FJ; Carr PA; Sun ZZ; Xu G; Forest CR; Church GM
    Nature; 2009 Aug; 460(7257):894-898. PubMed ID: 19633652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rewriting the blueprint of life by synthetic genomics and genome engineering.
    Annaluru N; Ramalingam S; Chandrasegaran S
    Genome Biol; 2015 Jun; 16(1):125. PubMed ID: 26076868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of a tRNA as a transcriptional reporter: the T7 late promoter is extremely efficient in Escherichia coli but its transcripts are poorly expressed.
    Lopez PJ; Iost I; Dreyfus M
    Nucleic Acids Res; 1994 Apr; 22(7):1186-93. PubMed ID: 8165132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pRSET family of T7 promoter expression vectors for Escherichia coli.
    Schoepfer R
    Gene; 1993 Feb; 124(1):83-5. PubMed ID: 8440483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways.
    Jones JA; Vernacchio VR; Lachance DM; Lebovich M; Fu L; Shirke AN; Schultz VL; Cress B; Linhardt RJ; Koffas MA
    Sci Rep; 2015 Jun; 5():11301. PubMed ID: 26062452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T7 RNA polymerase mutants with altered promoter specificities.
    Raskin CA; Diaz GA; McAllister WT
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3147-51. PubMed ID: 8475053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic biology. Synthetic biology remakes small genomes.
    Pennisi E
    Science; 2005 Nov; 310(5749):769-70. PubMed ID: 16272096
    [No Abstract]   [Full Text] [Related]  

  • 14. Environmental signal integration by a modular AND gate.
    Anderson JC; Voigt CA; Arkin AP
    Mol Syst Biol; 2007; 3():133. PubMed ID: 17700541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering.
    Lajoie MJ; Gregg CJ; Mosberg JA; Washington GC; Church GM
    Nucleic Acids Res; 2012 Dec; 40(22):e170. PubMed ID: 22904085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two base pairs at -9 and -8 distinguish between the bacteriophage T7 and SP6 promoters.
    Lee SS; Kang C
    J Biol Chem; 1993 Sep; 268(26):19299-304. PubMed ID: 8366080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli.
    Cress BF; Jones JA; Kim DC; Leitz QD; Englaender JA; Collins SM; Linhardt RJ; Koffas MA
    Nucleic Acids Res; 2016 May; 44(9):4472-85. PubMed ID: 27079979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription-independent DNA translocation of bacteriophage T7 DNA into Escherichia coli.
    GarcĂ­a LR; Molineux IJ
    J Bacteriol; 1996 Dec; 178(23):6921-9. PubMed ID: 8955315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup.
    Scholl D; Kieleczawa J; Kemp P; Rush J; Richardson CC; Merril C; Adhya S; Molineux IJ
    J Mol Biol; 2004 Jan; 335(5):1151-71. PubMed ID: 14729334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection and characterization of a mutant T7 RNA polymerase that recognizes an expanded range of T7 promoter-like sequences.
    Ikeda RA; Chang LL; Warshamana GS
    Biochemistry; 1993 Sep; 32(35):9115-24. PubMed ID: 8369283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.