These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22484862)

  • 1. Detachment strength of human osteoblasts cultured on hydroxyapatite with various surface roughness. Contribution of integrin subunits.
    Kokkinos PA; Koutsoukos PG; Deligianni DD
    J Mater Sci Mater Med; 2012 Jun; 23(6):1489-98. PubMed ID: 22484862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength.
    Deligianni DD; Katsala ND; Koutsoukos PG; Missirlis YF
    Biomaterials; 2001 Jan; 22(1):87-96. PubMed ID: 11085388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibronectin preadsorbed on hydroxyapatite together with rough surface structure increases osteoblasts' adhesion "in vitro": the theoretical usefulness of fibronectin preadsorption on hydroxyapatite to increase permanent stability and longevity in spine implants.
    Deligianni D; Korovessis P; Porte-Derrieu MC; Amedee J
    J Spinal Disord Tech; 2005 Jun; 18(3):257-62. PubMed ID: 15905771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells.
    Lüthen F; Lange R; Becker P; Rychly J; Beck U; Nebe JG
    Biomaterials; 2005 May; 26(15):2423-40. PubMed ID: 15585246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental usage of hydroxyapatite preadsorption with fibronectin to increase permanent stability and longevity of spinal implants.
    Deligianni D; Korovessis P; Porte-Derrieu MC; Amedee J; Repantis T
    Stud Health Technol Inform; 2006; 123():289-98. PubMed ID: 17108441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The behavior of osteoblast-like cells on various substrates with functional blocking of integrin-beta1 and integrin-beta3.
    Siebers MC; Walboomers XF; van den Dolder J; Leeuwenburgh SC; Wolke JG; Jansen JA
    J Mater Sci Mater Med; 2008 Feb; 19(2):861-8. PubMed ID: 17665129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced integrin-mediated human osteoblastic adhesion to porous amorphous calcium phosphate/poly (L-lactic acid) composite.
    Huang X; Qi Y; Li W; Shi Z; Weng W; Chen K; He R
    Chin Med J (Engl); 2014; 127(19):3443-8. PubMed ID: 25269911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invitro study of adherent mandibular osteoblast-like cells on carrier materials.
    Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D
    Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study.
    Pilloni A; Pompa G; Saccucci M; Di Carlo G; Rimondini L; Brama M; Zeza B; Wannenes F; Migliaccio S
    BMC Oral Health; 2014 Mar; 14():22. PubMed ID: 24650194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblastic differentiation of cultured rat bone marrow cells on hydroxyapatite with different surface topography.
    Rosa AL; Beloti MM; van Noort R
    Dent Mater; 2003 Dec; 19(8):768-72. PubMed ID: 14511735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of adhesion molecules on the behavior of osteoblast-like cells and normal human fibroblasts on different titanium surfaces.
    Park BS; Heo SJ; Kim CS; Oh JE; Kim JM; Lee G; Park WH; Chung CP; Min BM
    J Biomed Mater Res A; 2005 Sep; 74(4):640-51. PubMed ID: 16015642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings.
    Zhou J; Han Y; Lu S
    Int J Nanomedicine; 2014; 9():1243-60. PubMed ID: 24634585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique.
    Lahiri D; Benaduce AP; Kos L; Agarwal A
    Nanotechnology; 2011 Sep; 22(35):355703. PubMed ID: 21817784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New synthesis method of HA/P(D,L)LA composites: study of fibronectin adsorption and their effects in osteoblastic behavior for bone tissue engineering.
    Yala S; Boustta M; Gallet O; Hindié M; Carreiras F; Benachour H; Sidane D; Khireddine H
    J Mater Sci Mater Med; 2016 Sep; 27(9):140. PubMed ID: 27534400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Type I collagen in xenogenic bone material regulates attachment and spreading of osteoblasts over the beta1 integrin subunit].
    Baslé MF; Lesourd M; Grizon F; Pascaretti C; Chappard D
    Orthopade; 1998 Feb; 27(2):136-42. PubMed ID: 9530670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response.
    Guo X; Gough JE; Xiao P; Liu J; Shen Z
    J Biomed Mater Res A; 2007 Sep; 82(4):1022-32. PubMed ID: 17377965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical-physical characterization and in vitro preliminary biological assessment of hyaluronic acid benzyl ester-hydroxyapatite composite.
    Giordano C; Sanginario V; Ambrosio L; Silvio LD; Santin M
    J Biomater Appl; 2006 Jan; 20(3):237-52. PubMed ID: 16364964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation.
    Shishatskaya EI; Khlusov IA; Volova TG
    J Biomater Sci Polym Ed; 2006; 17(5):481-98. PubMed ID: 16800151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of hydroxyapatite/hydrophilic graphene composites and their modulation to cell behavior toward bone reconstruction engineering.
    Wang P; Yu T; Lv Q; Li S; Ma X; Yang G; Xu D; Liu X; Wang G; Chen Z; Xing SC
    Colloids Surf B Biointerfaces; 2019 Jan; 173():512-520. PubMed ID: 30340179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical characterization of different-roughness titanium surfaces, with and without hydroxyapatite coating, and their effect on human osteoblast-like cells.
    Borsari V; Giavaresi G; Fini M; Torricelli P; Salito A; Chiesa R; Chiusoli L; Volpert A; Rimondini L; Giardino R
    J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):359-68. PubMed ID: 16100719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.