These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22485577)

  • 1. Inducing yeast cell synchrony: dilution of stationary-phase cultures.
    Amberg DC; Burke DJ; Strathern JN
    CSH Protoc; 2006 Jun; 2006(1):. PubMed ID: 22485577
    [No Abstract]   [Full Text] [Related]  

  • 2. Aging and the survival of quiescent and non-quiescent cells in yeast stationary-phase cultures.
    Werner-Washburne M; Roy S; Davidson GS
    Subcell Biochem; 2012; 57():123-43. PubMed ID: 22094420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of yeast growth conditions on yeast-mycelial transition in Candida albicans.
    Bell WM; Chaffin WL
    Mycopathologia; 1983 Dec; 84(1):41-4. PubMed ID: 6369144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A haploproficient interaction of the transaldolase paralogue NQM1 with the transcription factor VHR1 affects stationary phase survival and oxidative stress resistance.
    Michel S; Keller MA; Wamelink MM; Ralser M
    BMC Genet; 2015 Feb; 16():13. PubMed ID: 25887987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient-limited yeast growth in Candida albicans: effect on yeast-mycelial transition.
    Bell WM; Chaffin WL
    Can J Microbiol; 1980 Jan; 26(1):102-5. PubMed ID: 6996797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the radiosensitivity of stationary, exponential and G1 phase wild type and repair deficient yeast cultures: supporting evidence for stationary phase yeast cells being in G0.
    Tippins RS; Parry JM
    Int J Radiat Biol Relat Stud Phys Chem Med; 1982 Feb; 41(2):215-20. PubMed ID: 6978312
    [No Abstract]   [Full Text] [Related]  

  • 7. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.
    Nussbaum I; Weindling E; Jubran R; Cohen A; Bar-Nun S
    PLoS One; 2014; 9(10):e111505. PubMed ID: 25356557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of initiation of DNA synthesis in Chinese hamster cells. I. Production of stable, reversible G1-arrested populations in suspension culture.
    Tobey RA; Ley KD
    J Cell Biol; 1970 Jul; 46(1):151-7. PubMed ID: 5460461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging and differentiation in yeast populations: elders with different properties and functions.
    Palková Z; Wilkinson D; Váchová L
    FEMS Yeast Res; 2014 Feb; 14(1):96-108. PubMed ID: 24119061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in cell size and DNA content in Sulfolobus cultures during dilution and temperature shift experiments.
    Hjort K; Bernander R
    J Bacteriol; 1999 Sep; 181(18):5669-75. PubMed ID: 10482507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of
    Bisschops MM; Vos T; Martínez-Moreno R; Cortés PT; Pronk JT; Daran-Lapujade P
    Microb Cell; 2015 Oct; 2(11):429-444. PubMed ID: 28357268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global analysis of proteins synthesized by Mycobacterium smegmatis provides direct evidence for physiological heterogeneity in stationary-phase cultures.
    Blokpoel MC; Smeulders MJ; Hubbard JA; Keer J; Williams HD
    J Bacteriol; 2005 Oct; 187(19):6691-700. PubMed ID: 16166531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of two cell populations from yeast during high-level alcoholic fermentation that resemble quiescent and nonquiescent cells from the stationary phase on glucose.
    Benbadis L; Cot M; Rigoulet M; Francois J
    FEMS Yeast Res; 2009 Dec; 9(8):1172-86. PubMed ID: 19686340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae.
    Jakubowski W; Biliński T; Bartosz G
    Free Radic Biol Med; 2000 Mar; 28(5):659-64. PubMed ID: 10754260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes.
    Martinez MJ; Roy S; Archuletta AB; Wentzell PD; Anna-Arriola SS; Rodriguez AL; Aragon AD; Quiñones GA; Allen C; Werner-Washburne M
    Mol Biol Cell; 2004 Dec; 15(12):5295-305. PubMed ID: 15456898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodemographic trajectories of age-specific reproliferation from stationary phase in the yeast Saccharomyces cerevisiae seem multiphasic.
    Gendron CM; Minois N; Fabrizio P; Longo VD; Pletcher SD; Vaupel JW
    Mech Ageing Dev; 2003 Dec; 124(10-12):1059-63. PubMed ID: 14659594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The induction of mitotic gene conversion in the yeast, Saccharomyces cerevisiae JD1 by 4-chloromethylbiphenyl (4CMB), benzyl chloride (BC) and 4-hydroxymethylbiphenyl (4HMB).
    Brooks TM; Gonzalez LP
    Mutat Res; 1982; 100(1-4):157-62. PubMed ID: 7035886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of thioredoxin peroxidase in aging of stationary cultures of Saccharomyces cerevisiae.
    Lee JH; Park JW
    Free Radic Res; 2004 Mar; 38(3):225-31. PubMed ID: 15129730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine methylation in yeast proteins during stationary-phase growth and heat shock.
    Lakowski TM; Pak ML; Szeitz A; Thomas D; Vhuiyan MI; Clement B; Frankel A
    Amino Acids; 2015 Dec; 47(12):2561-71. PubMed ID: 26189025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analyses of the variation of the transcriptome and proteome of Rhodobacter sphaeroides throughout growth.
    Bathke J; Konzer A; Remes B; McIntosh M; Klug G
    BMC Genomics; 2019 May; 20(1):358. PubMed ID: 31072330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.