These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 224856)

  • 21. The anorectic action of naloxone is attenuated by adaptation to a food-deprivation schedule.
    Sanger DJ; McCarthy PS
    Psychopharmacology (Berl); 1982; 77(4):336-8. PubMed ID: 6813893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Naloxone attenuation of sham feeding is modified by manipulation of sucrose concentration.
    Kirkham TC; Cooper SJ
    Physiol Behav; 1988; 44(4-5):491-4. PubMed ID: 2853384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurobiology of withdrawal motivation: evidence for two separate aversive effects produced in morphine-naive versus morphine-dependent rats by both naloxone and spontaneous withdrawal.
    Bechara A; Nader K; van der Kooy D
    Behav Neurosci; 1995 Feb; 109(1):91-105. PubMed ID: 7734084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing immune activation (lipopolysaccharide) and toxin (lithium chloride)-induced gustatory conditioning: lipopolysaccharide produces conditioned taste avoidance but not aversion.
    Cross-Mellor SK; Kavaliers M; Ossenkopp KP
    Behav Brain Res; 2004 Jan; 148(1-2):11-9. PubMed ID: 14684243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effects of morphine on food and water intake in food deprived and freely-feeding rats.
    Sanger DJ; McCarthy PS
    Psychopharmacology (Berl); 1980; 72(1):103-6. PubMed ID: 6780999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased food and water intake produced in rats by opiate receptor agonists.
    Sanger DJ; McCarthy PS
    Psychopharmacology (Berl); 1981; 74(3):217-20. PubMed ID: 6791229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-dose oral naltrexone: aversive response in drug-naive rat.
    Mucha RF
    Biol Psychiatry; 1990 Mar; 27(5):543-5. PubMed ID: 2155673
    [No Abstract]   [Full Text] [Related]  

  • 28. Suppressive effects of naloxone on food and water intake in vagotomized rats.
    Bellinger LL; Williams FE
    Physiol Behav; 1983 Feb; 30(2):273-8. PubMed ID: 6302721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential cross-tolerance to mu and kappa opioid agonists in morphine-tolerant rats responding under a schedule of food presentation.
    Picker MJ; Negus SS; Powell KR
    Psychopharmacology (Berl); 1991; 103(1):129-35. PubMed ID: 1848712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Naloxone suppresses food/water consumption in the deprived cat.
    Foster JA; Morrison M; Dean SJ; Hill M; Frenk H
    Pharmacol Biochem Behav; 1981 Mar; 14(3):419-21. PubMed ID: 7232467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Naloxone suppresses intake of highly preferred saccharin solutions in food deprived and sated rats.
    Lynch WC; Libby L
    Life Sci; 1983 Nov; 33(19):1909-14. PubMed ID: 6645785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aversive conditioning in the rat: effects of a benzodiazepine and of an opioid agonist and antagonist on conditioned hypoalgesia and fear.
    Westbrook RF; Greeley JD; Nabke CP; Swinbourne AL
    J Exp Psychol Anim Behav Process; 1991 Jul; 17(3):219-30. PubMed ID: 1653814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conditioned drug reward enhances subsequent spatial learning and memory in rats.
    Zhai HF; Zhang ZY; Zhao M; Qiu Y; Ghitza UE; Lu L
    Psychopharmacology (Berl); 2007 Dec; 195(2):193-201. PubMed ID: 17661018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of morphine-conditioned place preference is more vulnerable than naloxone-conditioned place aversion to disruption by nociceptin in mice.
    Sakoori K; Murphy NP
    Neurosci Lett; 2008 Oct; 443(2):108-12. PubMed ID: 18662746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Naloxone persistently modifies water-intake.
    Akkok F; Manha NA; Czirr SA; Reid LD
    Pharmacol Biochem Behav; 1988 Feb; 29(2):331-4. PubMed ID: 2834752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased food intake after opioid microinjections into nucleus accumbens and ventral tegmental area of rat.
    Mucha RF; Iversen SD
    Brain Res; 1986 Nov; 397(2):214-24. PubMed ID: 3026557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual effect of naloxone on drinking behaviour of rats.
    Cantalamessa F; de Caro G; Massi M; Micossi LG
    Arch Int Pharmacodyn Ther; 1982 Mar; 256(1):10-21. PubMed ID: 7092405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of the kappa-agonist bremazocine on ingestive behaviour in mice and rats.
    Hartig U; Opitz K
    Arch Int Pharmacodyn Ther; 1983 Mar; 262(1):4-12. PubMed ID: 6307194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of beta-endorphin and mu-opioid receptors in mediating the aversive effect of lithium in the rat.
    Shippenberg TS; Millan MJ; Mucha RF; Herz A
    Eur J Pharmacol; 1988 Sep; 154(2):135-44. PubMed ID: 2852596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antidipsogenic action of naloxone under different water deprivation conditions.
    Cannizzaro G; Flugy A; Provenzano PM
    Prog Neuropsychopharmacol Biol Psychiatry; 1983; 7(2-3):195-202. PubMed ID: 6684315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.