BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22486084)

  • 1. Optimum swimming pathways of fish spawning migrations in rivers.
    McElroy B; DeLonay A; Jacobson R
    Ecology; 2012 Jan; 93(1):29-34. PubMed ID: 22486084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water velocity shapes fish movement behavior.
    Hintz WD; Porreca AP; Garvey JE
    J Fish Biol; 2024 Apr; 104(4):1223-1230. PubMed ID: 38273426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of water velocity and temperature on energy use, behaviour and mortality of pallid sturgeon Scaphirhynchus albus larvae.
    Mrnak JT; Heironimus LB; James DA; Chipps SR
    J Fish Biol; 2020 Dec; 97(6):1690-1700. PubMed ID: 32914414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes.
    Fenkes M; Shiels HA; Fitzpatrick JL; Nudds RL
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Mar; 193():11-21. PubMed ID: 26603555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swimming activity and energetic costs of adult lake sturgeon during fishway passage.
    Thiem JD; Dawson JW; Hatin D; Danylchuk AJ; Dumont P; Gleiss AC; Wilson RP; Cooke SJ
    J Exp Biol; 2016 Aug; 219(Pt 16):2534-44. PubMed ID: 27535988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual variation in migration speed of upriver-migrating sockeye salmon in the Fraser River in relation to their physiological and energetic status at marine approach.
    Hanson KC; Cooke SJ; Hinch SG; Crossin GT; Patterson DA; English KK; Donaldson MR; Shrimpton JM; Van Der Kraak G; Farrell AP
    Physiol Biochem Zool; 2008; 81(3):255-68. PubMed ID: 18419519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the robust design framework and relative abundance to predict the population size of pallid sturgeon Scaphirhynchus albus in the lower Missouri River.
    Steffensen KD; Powell LA; Pegg MA
    J Fish Biol; 2017 Nov; 91(5):1378-1391. PubMed ID: 28925076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of fish swimming and leaping under waterfalls: a realistic field, image-based biophysical model with bioengineering implications.
    Morán-López R; Uceda Tolosa O
    Bioinspir Biomim; 2020 Jul; 15(5):056011. PubMed ID: 32521519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG telemetry studies on upstream migration of chum salmon in the Toyohira River, Hokkaido, Japan.
    Makiguchi Y; Konno Y; Konishi K; Miyoshi K; Sakashita T; Nii H; Nakao K; Ueda H
    Fish Physiol Biochem; 2011 Jun; 37(2):273-84. PubMed ID: 21559797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dredging activity and associated sound have negligible effects on adult Atlantic sturgeon migration to spawning habitat in a large coastal river.
    Balazik M; Barber M; Altman S; Reine K; Katzenmeyer A; Bunch A; Garman G
    PLoS One; 2020; 15(3):e0230029. PubMed ID: 32142543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?
    Hondorp DW; Bennion DH; Roseman EF; Holbrook CM; Boase JC; Chiotti JA; Thomas MV; Wills TC; Drouin RG; Kessel ST; Krueger CC
    PLoS One; 2017; 12(7):e0179791. PubMed ID: 28678798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecology of Exercise in Wild Fish: Integrating Concepts of Individual Physiological Capacity, Behavior, and Fitness Through Diverse Case Studies.
    Brownscombe JW; Cooke SJ; Algera DA; Hanson KC; Eliason EJ; Burnett NJ; Danylchuk AJ; Hinch SG; Farrell AP
    Integr Comp Biol; 2017 Aug; 57(2):281-292. PubMed ID: 28859404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological condition differentially affects the behavior and survival of two populations of sockeye salmon during their freshwater spawning migration.
    Donaldson MR; Hinch SG; Patterson DA; Farrell AP; Shrimpton JM; Miller-Saunders KM; Robichaud D; Hills J; Hruska KA; Hanson KC; English KK; Van Der Kraak G; Cooke SJ
    Physiol Biochem Zool; 2010; 83(3):446-58. PubMed ID: 20367319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical analysis and validation of an exactly solvable model for upstream migration of fish schools in one-dimensional rivers.
    Yoshioka H
    Math Biosci; 2016 Nov; 281():139-148. PubMed ID: 27693303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple game-theoretic model for upstream fish migration.
    Yoshioka H
    Theory Biosci; 2017 Dec; 136(3-4):99-111. PubMed ID: 28470443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swimming behavior of emigrating Chinook Salmon smolts.
    Holleman RC; Gross ES; Thomas MJ; Rypel AL; Fangue NA
    PLoS One; 2022; 17(3):e0263972. PubMed ID: 35290382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced flow impacts salmonid smolt emigration in a river with low-head weirs.
    Gauld NR; Campbell RN; Lucas MC
    Sci Total Environ; 2013 Aug; 458-460():435-43. PubMed ID: 23685369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potamodromous migrations in the Magdalena River basin: bimodal reproductive patterns in neotropical rivers.
    López-Casas S; Jiménez-Segura LF; Agostinho AA; Pérez CM
    J Fish Biol; 2016 Jul; 89(1):157-71. PubMed ID: 27073186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic basis of individual mortality in Pacific salmon during spawning migrations.
    Cooke SJ; Hinch SG; Crossin GT; Patterson DA; English KK; Healey MC; Shrimpton JM; Van Der Kraak G; Farrell AP
    Ecology; 2006 Jun; 87(6):1575-86. PubMed ID: 16869433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behaviour and locomotor activity of a migratory catostomid during fishway passage.
    Silva AT; Hatry C; Thiem JD; Gutowsky LF; Hatin D; Zhu DZ; Dawson JW; Katopodis C; Cooke SJ
    PLoS One; 2015; 10(4):e0123051. PubMed ID: 25853245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.