BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 22486637)

  • 1. Efficacy of food proteins as carriers for flavonoids.
    Bohin MC; Vincken JP; van der Hijden HT; Gruppen H
    J Agric Food Chem; 2012 Apr; 60(16):4136-43. PubMed ID: 22486637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of epigallocatechin-3-gallate nanocarrier based on glycosylated casein: stability and interaction mechanism.
    Xue J; Tan C; Zhang X; Feng B; Xia S
    J Agric Food Chem; 2014 May; 62(20):4677-84. PubMed ID: 24670204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the bitter-masking potential of food proteins for EGCG by a cell-based human bitter taste receptor assay and binding studies.
    Bohin MC; Roland WS; Gruppen H; Gouka RJ; van der Hijden HT; Dekker P; Smit G; Vincken JP
    J Agric Food Chem; 2013 Oct; 61(42):10010-7. PubMed ID: 24093533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native and thermally modified protein-polyphenol coassemblies: lactoferrin-based nanoparticles and submicrometer particles as protective vehicles for (-)-epigallocatechin-3-gallate.
    Yang W; Xu C; Liu F; Yuan F; Gao Y
    J Agric Food Chem; 2014 Nov; 62(44):10816-27. PubMed ID: 25310084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy.
    Williamson MP; McCormick TG; Nance CL; Shearer WT
    J Allergy Clin Immunol; 2006 Dec; 118(6):1369-74. PubMed ID: 17157668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (-)-Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules.
    Shutava TG; Balkundi SS; Lvov YM
    J Colloid Interface Sci; 2009 Feb; 330(2):276-83. PubMed ID: 19027120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model.
    van't Slot G; Humpf HU
    J Agric Food Chem; 2009 Sep; 57(17):8041-8. PubMed ID: 19670865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity.
    Seeram NP; Henning SM; Niu Y; Lee R; Scheuller HS; Heber D
    J Agric Food Chem; 2006 Mar; 54(5):1599-603. PubMed ID: 16506807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the inhibition of bovine liver dihydrofolate reductase by tea catechins: origin of slow-binding inhibition and pH studies.
    Navarro-Perán E; Cabezas-Herrera J; Hiner AN; Sadunishvili T; García-Cánovas F; Rodríguez-López JN
    Biochemistry; 2005 May; 44(20):7512-25. PubMed ID: 15895994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of dietary polyphenols with bovine milk proteins: molecular structure-affinity relationship and influencing bioactivity aspects.
    Xiao J; Mao F; Yang F; Zhao Y; Zhang C; Yamamoto K
    Mol Nutr Food Res; 2011 Nov; 55(11):1637-45. PubMed ID: 21805622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-covalent interaction of dietary polyphenols with total plasma proteins of type II diabetes: molecular structure/property-affinity relationships.
    Xiao J; Zhao Y; Wang H; Yuan Y; Yang F; Zhang C; Kai G
    Integr Biol (Camb); 2011 Nov; 3(11):1087-94. PubMed ID: 21947088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (-)-epigallocatechin-3-gallate (EGCG) maintains kappa-casein in its pre-fibrillar state without redirecting its aggregation pathway.
    Hudson SA; Ecroyd H; Dehle FC; Musgrave IF; Carver JA
    J Mol Biol; 2009 Sep; 392(3):689-700. PubMed ID: 19616561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between the biological activities of methylated derivatives of (-)-epigallocatechin-3-O-gallate (EGCG) and their cell surface binding activities.
    Yano S; Fujimura Y; Umeda D; Miyase T; Yamada K; Tachibana H
    J Agric Food Chem; 2007 Aug; 55(17):7144-8. PubMed ID: 17661493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem mass spectrometry studies of green tea catechins. Identification of three minor components in the polyphenolic extract of green tea.
    Miketova P; Schram KH; Whitney J; Li M; Huang R; Kerns E; Valcic S; Timmermann BN; Rourick R; Klohr S
    J Mass Spectrom; 2000 Jul; 35(7):860-9. PubMed ID: 10934439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide.
    López-Lázaro M; Calderón-Montaño JM; Burgos-Morón E; Austin CA
    Mutagenesis; 2011 Jul; 26(4):489-98. PubMed ID: 21382914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding effect of proline-rich-proteins (PRPs) on in vitro antimicrobial activity of the flavonoids.
    Ansari JA; Naz S; Tarar OM; Siddiqi R; Haider MS; Jamil K
    Braz J Microbiol; 2015 Mar; 46(1):183-8. PubMed ID: 26221106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan nanoparticles enhance the plasma exposure of (-)-epigallocatechin gallate in mice through an enhancement in intestinal stability.
    Dube A; Nicolazzo JA; Larson I
    Eur J Pharm Sci; 2011 Oct; 44(3):422-6. PubMed ID: 21925598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of tannic acid-fish scale gelatin hydrolysate hybrid nanoparticles on intestinal barrier function and α-amylase activity.
    Wu SJ; Ho YC; Jiang SZ; Mi FL
    Food Funct; 2015 Jul; 6(7):2283-92. PubMed ID: 26069899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular property-binding affinity relationship of flavonoids for common rat plasma proteins in vitro.
    Xiao J; Cao H; Chen T; Yang F; Liu C; Xu X
    Biochimie; 2011 Feb; 93(2):134-40. PubMed ID: 20831890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.