BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22486967)

  • 21. Genome shuffling of Streptomyces roseosporus for improving daptomycin production.
    Yu G; Hu Y; Hui M; Chen L; Wang L; Liu N; Yin Y; Zhao J
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2661-9. PubMed ID: 24425298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus.
    Tamehiro N; Hosaka T; Xu J; Hu H; Otake N; Ochi K
    Appl Environ Microbiol; 2003 Nov; 69(11):6412-7. PubMed ID: 14602594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pleiotropic regulation of daptomycin synthesis by DptR1, a LuxR family transcriptional regulator.
    Yu G; Hui M; Li R; Zhang S
    World J Microbiol Biotechnol; 2020 Aug; 36(9):135. PubMed ID: 32778952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement.
    Huang D; Wen J; Wang G; Yu G; Jia X; Chen Y
    Appl Microbiol Biotechnol; 2012 May; 94(3):637-49. PubMed ID: 22406858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DptR2, a DeoR-type auto-regulator, is required for daptomycin production in Streptomyces roseosporus.
    Wang F; Ren NN; Luo S; Chen XX; Mao XM; Li YQ
    Gene; 2014 Jul; 544(2):208-15. PubMed ID: 24768321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032).
    Debono M; Abbott BJ; Molloy RM; Fukuda DS; Hunt AH; Daupert VM; Counter FT; Ott JL; Carrell CB; Howard LC
    J Antibiot (Tokyo); 1988 Aug; 41(8):1093-105. PubMed ID: 2844711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2).
    Okamoto-Hosoya Y; Hosaka T; Ochi K
    Microbiology (Reading); 2003 Nov; 149(Pt 11):3299-3309. PubMed ID: 14600242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes.
    Tanaka Y; Komatsu M; Okamoto S; Tokuyama S; Kaji A; Ikeda H; Ochi K
    Appl Environ Microbiol; 2009 Jul; 75(14):4919-22. PubMed ID: 19447953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulation of kynurenine pathway for enhanced daptomycin production in Streptomyces roseosporus.
    Liao G; Wang L; Liu Q; Guan F; Huang Y; Hu C
    Biotechnol Prog; 2013; 29(4):847-52. PubMed ID: 23666758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics.
    Miao V; Coëffet-Le Gal MF; Nguyen K; Brian P; Penn J; Whiting A; Steele J; Kau D; Martin S; Ford R; Gibson T; Bouchard M; Wrigley SK; Baltz RH
    Chem Biol; 2006 Mar; 13(3):269-76. PubMed ID: 16638532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Daptomycin production enhancement by ARTP mutagenesis and fermentation optimization in Streptomyces roseosporus.
    Zhu CY; Zhao XY; Lyu ZY; Gao WL; Zhao QW; Chen XA; Li YQ
    J Appl Microbiol; 2023 Oct; 134(10):. PubMed ID: 37873659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breeding of High Daptomycin-Producing Strain by Streptomycin Resistance Superposition.
    Chu S; Hu W; Zhang K; Hui F
    Pol J Microbiol; 2022 Sep; 71(3):463-471. PubMed ID: 36185027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of rpsL for dominance selection and gene replacement in Streptomyces roseosporus.
    Hosted TJ; Baltz RH
    J Bacteriol; 1997 Jan; 179(1):180-6. PubMed ID: 8981996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combinatorial biosynthesis of novel antibiotics related to daptomycin.
    Nguyen KT; Ritz D; Gu JQ; Alexander D; Chu M; Miao V; Brian P; Baltz RH
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17462-7. PubMed ID: 17090667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chapter 20. Biosynthesis and genetic engineering of lipopeptides in Streptomyces roseosporus.
    Baltz RH
    Methods Enzymol; 2009; 458():511-31. PubMed ID: 19374996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus.
    Doekel S; Coëffet-Le Gal MF; Gu JQ; Chu M; Baltz RH; Brian P
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2872-2880. PubMed ID: 18757821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations.
    Hu H; Ochi K
    Appl Environ Microbiol; 2001 Apr; 67(4):1885-92. PubMed ID: 11282646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pleiotropic regulation of daptomycin synthesis by DptR1, a LuxR family transcriptional regulator.
    Yu G; Hui M; Li R; Zhang S
    World J Microbiol Biotechnol; 2020 Oct; 36(11):173. PubMed ID: 33079235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces.
    Du D; Wang L; Tian Y; Liu H; Tan H; Niu G
    Sci Rep; 2015 Mar; 5():8740. PubMed ID: 25737113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strain improvement of Streptomyces roseosporus for daptomycin production by rational screening of He-Ne laser and NTG induced mutants and kinetic modeling.
    Yu G; Jia X; Wen J; Lu W; Wang G; Caiyin Q; Chen Y
    Appl Biochem Biotechnol; 2011 Mar; 163(6):729-43. PubMed ID: 20886375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.