BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22487128)

  • 21. Degradation of aflatoxin B(1) by fungal laccase enzymes.
    Alberts JF; Gelderblom WC; Botha A; van Zyl WH
    Int J Food Microbiol; 2009 Sep; 135(1):47-52. PubMed ID: 19683355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increasing Pleurotus ostreatus laccase production by culture medium optimization and copper/lignin synergistic induction.
    Tinoco R; Acevedo A; Galindo E; Serrano-Carreón L
    J Ind Microbiol Biotechnol; 2011 Apr; 38(4):531-40. PubMed ID: 20694851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of laccases by Pleurotus ostreatus in submerged fermentation in co-culture with Trichoderma viride.
    Flores C; Casasanero R; Trejo-Hernández MR; Galindo E; Serrano-Carreón L
    J Appl Microbiol; 2010 Mar; 108(3):810-817. PubMed ID: 19709340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of laccase production using response surface methodology coupled with differential evolution.
    Bhattacharya SS; Garlapati VK; Banerjee R
    N Biotechnol; 2011 Jan; 28(1):31-9. PubMed ID: 20541634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds.
    de Souza CG; Tychanowicz GK; de Souza DF; Peralta RM
    J Basic Microbiol; 2004; 44(2):129-36. PubMed ID: 15069672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solid-state fermentation of rapeseed meal with the white-rot fungi trametes versicolor and Pleurotus ostreatus.
    Żuchowski J; Pecio Ł; Jaszek M; Stochmal A
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2075-81. PubMed ID: 24022781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laccase production using Pleurotus ostreatus 1804 immobilized on PUF cubes in batch and packed bed reactors: influence of culture conditions.
    Prasad KK; Mohan SV; Bhaskar YV; Ramanaiah SV; Babu VL; Pati BR; Sarma PN
    J Microbiol; 2005 Jun; 43(3):301-7. PubMed ID: 15995650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of laccase production by Pleurotus ostreatus IMI 395545 using the Taguchi DOE methodology.
    Periasamy R; Palvannan T
    J Basic Microbiol; 2010 Dec; 50(6):548-56. PubMed ID: 20806254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis.
    Faraco V; Ercole C; Festa G; Giardina P; Piscitelli A; Sannia G
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1329-35. PubMed ID: 18043917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein and gene structure of a blue laccase from Pleurotus ostreatus1.
    Giardina P; Palmieri G; Scaloni A; Fontanella B; Faraco V; Cennamo G; Sannia G
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):655-63. PubMed ID: 10417329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars.
    Deswal D; Gupta R; Nandal P; Kuhad RC
    Carbohydr Polym; 2014 Jan; 99():264-9. PubMed ID: 24274505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Essential role of the N- and C-terminals of laccase from Pleurotus florida on the laccase activity and stability.
    Hu M; Zhou X; Shi Y; Lin J; Irfan M; Tao Y
    Appl Biochem Biotechnol; 2014 Nov; 174(5):2007-17. PubMed ID: 25161036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The identification of transcriptional regulation related gene of laccase poxc through yeast one-hybrid screening from Pleurotus ostreatus.
    Qi Y; Liu C; Sun X; Qiu L; Shen J
    Fungal Biol; 2017 Nov; 121(11):905-910. PubMed ID: 29029697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of laccase from Pleurotus florida NCIM 1243 using Plackett-Burman design and response surface methodology.
    Palvannan T; Sathishkumar P
    J Basic Microbiol; 2010 Aug; 50(4):325-35. PubMed ID: 20473960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus.
    Valásková V; Baldrian P
    Res Microbiol; 2006 Mar; 157(2):119-24. PubMed ID: 16125911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii.
    Akpinar M; Urek RO
    Prep Biochem Biotechnol; 2012; 42(6):582-97. PubMed ID: 23030469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Relationship between the laccase production of Pleurotus ostreatus and the full wavelength scan for the fermentation liquid].
    Cheng FS; Sheng JP; Wang RA; Shen L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2157-60. PubMed ID: 19839329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sugarcane bagasse degradation and characterization of three white-rot fungi.
    Dong XQ; Yang JS; Zhu N; Wang ET; Yuan HL
    Bioresour Technol; 2013 Mar; 131():443-51. PubMed ID: 23376835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New process for fungal delignification of sugar-cane bagasse and simultaneous production of laccase in a vapor phase bioreactor.
    Meza JC; Sigoillot JC; Lomascolo A; Navarro D; Auria R
    J Agric Food Chem; 2006 May; 54(11):3852-8. PubMed ID: 16719506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of laccase production by Ganoderma lucidum in submerged and solid-state fermentation using different inducers.
    Rodrigues EM; Karp SG; Malucelli LC; Helm CV; Alvarez TM
    J Basic Microbiol; 2019 Aug; 59(8):784-791. PubMed ID: 31259434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.