BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 22487958)

  • 1. Mechanism of nanoparticle formation from ternary coground phenytoin and its derivatives.
    Moribe K; Ogino A; Kumamoto T; Ishikawa T; Limwikrant W; Higashi K; Yamamoto K
    J Pharm Sci; 2012 Sep; 101(9):3413-24. PubMed ID: 22487958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Insight into Different Stabilization Mechanisms of Phenytoin Derivatives Supersaturation by HPMC and PVP.
    Otsuka N; Ueda K; Ohyagi N; Shimizu K; Katakawa K; Kumamoto T; Higashi K; Yamamoto K; Moribe K
    J Pharm Sci; 2015 Aug; 104(8):2574-82. PubMed ID: 26059285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation mechanism of colloidal nanoparticles obtained from probucol/PVP/SDS ternary ground mixture.
    Pongpeerapat A; Wanawongthai C; Tozuka Y; Moribe K; Yamamoto K
    Int J Pharm; 2008 Mar; 352(1-2):309-16. PubMed ID: 18162340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-TEM and AFM Observation of the Time-Dependent Evolution of Amorphous Probucol Nanoparticles Formed by the Aqueous Dispersion of Ternary Solid Dispersions.
    Zhao Z; Katai H; Higashi K; Ueda K; Kawakami K; Moribe K
    Mol Pharm; 2019 May; 16(5):2184-2198. PubMed ID: 30925218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural evaluation of probucol nanoparticles in water by atomic force microscopy.
    Moribe K; Limwikrant W; Higashi K; Yamamoto K
    Int J Pharm; 2012 May; 427(2):365-71. PubMed ID: 22370474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular-level characterization of probucol nanocrystal in water by in situ solid-state NMR spectroscopy.
    Zhang J; Higashi K; Limwikrant W; Moribe K; Yamamoto K
    Int J Pharm; 2012 Feb; 423(2):571-6. PubMed ID: 22138607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ molecular elucidation of drug supersaturation achieved by nano-sizing and amorphization of poorly water-soluble drug.
    Ueda K; Higashi K; Yamamoto K; Moribe K
    Eur J Pharm Sci; 2015 Sep; 77():79-89. PubMed ID: 26036231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS.
    Itoh K; Pongpeerapat A; Tozuka Y; Oguchi T; Yamamoto K
    Chem Pharm Bull (Tokyo); 2003 Feb; 51(2):171-4. PubMed ID: 12576650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug nanoparticle formation from drug/HPMC/SDS ternary ground mixtures.
    Moribe K; Pongpeerapat A; Tozuka Y; Yamamoto K
    Pharmazie; 2006 Feb; 61(2):97-101. PubMed ID: 16526554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Solid-State NMR Relaxometry for Characterization and Formulation Optimization of Grinding-Induced Drug Nanoparticle.
    Ueda K; Higashi K; Moribe K
    Mol Pharm; 2016 Mar; 13(3):852-62. PubMed ID: 26855230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular interaction among probucol/PVP/SDS multicomponent system investigated by solid-state NMR.
    Pongpeerapat A; Higashi K; Tozuka Y; Moribe K; Yamamoto K
    Pharm Res; 2006 Nov; 23(11):2566-74. PubMed ID: 16969700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization of Probucol in Nanoparticles Revealed by AFM Analysis in Aqueous Solution.
    Egami K; Higashi K; Yamamoto K; Moribe K
    Mol Pharm; 2015 Aug; 12(8):2972-80. PubMed ID: 26106951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations.
    Baumgartner R; Eitzlmayr A; Matsko N; Tetyczka C; Khinast J; Roblegg E
    Int J Pharm; 2014 Dec; 477(1-2):1-11. PubMed ID: 25304093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs.
    Niwa T; Danjo K
    Eur J Pharm Sci; 2013 Nov; 50(3-4):272-81. PubMed ID: 23907001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of curcumin nanocrystal: physical aspects.
    Rachmawati H; Al Shaal L; Müller RH; Keck CM
    J Pharm Sci; 2013 Jan; 102(1):204-14. PubMed ID: 23047816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology.
    Teeranachaideekul V; Junyaprasert VB; Souto EB; Müller RH
    Int J Pharm; 2008 Apr; 354(1-2):227-34. PubMed ID: 18242898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing various techniques to produce micro/nanoparticles for enhancing the dissolution of celecoxib containing PVP.
    Homayouni A; Sadeghi F; Varshosaz J; Garekani HA; Nokhodchi A
    Eur J Pharm Biopharm; 2014 Sep; 88(1):261-74. PubMed ID: 24952357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a novel ultra cryo-milling technique for a poorly water-soluble drug using dry ice beads and liquid nitrogen.
    Sugimoto S; Niwa T; Nakanishi Y; Danjo K
    Int J Pharm; 2012 Apr; 426(1-2):162-169. PubMed ID: 22266538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle formation and growth during in vitro dissolution of ketoconazole solid dispersion.
    Kanaujia P; Lau G; Ng WK; Widjaja E; Hanefeld A; Fischbach M; Maio M; Tan RB
    J Pharm Sci; 2011 Jul; 100(7):2876-85. PubMed ID: 21290385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.