BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

667 related articles for article (PubMed ID: 22488106)

  • 1. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.
    Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY
    J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
    Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY
    J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Töyräs J; Jääskeläinen JE; Djupsund K; Tanila H; Lappalainen R
    Biosens Bioelectron; 2009 Jun; 24(10):3067-72. PubMed ID: 19380223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of electrode design on the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microelectrode array for chronic deep-brain microstimulation and recording.
    McCreery D; Lossinsky A; Pikov V; Liu X
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesion of the ventral tegmental area amplifies stimulation-induced Fos expression in the rat brain.
    Majkutewicz I; Cecot T; Jerzemowska G; Myślińska D; Plucińska K; Trojniar W; Wrona D
    Brain Res; 2010 Mar; 1320():95-105. PubMed ID: 20079346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process.
    Motta PS; Judy JW
    IEEE Trans Biomed Eng; 2005 May; 52(5):923-33. PubMed ID: 15887542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.
    Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C
    J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex.
    Wang C; Brunton E; Haghgooie S; Cassells K; Lowery A; Rajan R
    J Neural Eng; 2013 Aug; 10(4):046010. PubMed ID: 23819958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible polyimide-based intracortical electrode arrays with bioactive capability.
    Rousche PJ; Pellinen DS; Pivin DP; Williams JC; Vetter RJ; Kipke DR
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):361-71. PubMed ID: 11327505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gelatine-embedded electrodes--a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes.
    Lind G; Linsmeier CE; Thelin J; Schouenborg J
    J Neural Eng; 2010 Aug; 7(4):046005. PubMed ID: 20551508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode.
    Raspopovic S; Capogrosso M; Micera S
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):333-44. PubMed ID: 21693427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.