BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22488112)

  • 1. Chromosome painting of the pygmy tree shrew shows that no derived cytogenetic traits link primates and scandentia.
    Dumas F; Houck ML; Bigoni F; Perelman P; Romanenko SA; Stanyon R
    Cytogenet Genome Res; 2012; 136(3):175-9. PubMed ID: 22488112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flying lemurs--the 'flying tree shrews'? Molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade.
    Nie W; Fu B; O'Brien PC; Wang J; Su W; Tanomtong A; Volobouev V; Ferguson-Smith MA; Yang F
    BMC Biol; 2008 May; 6():18. PubMed ID: 18452598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of Interstitial Telomeric Sequences in Primates and the Pygmy Tree Shrew (Scandentia).
    Mazzoleni S; Schillaci O; Sineo L; Dumas F
    Cytogenet Genome Res; 2017; 151(3):141-150. PubMed ID: 28423373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans.
    Müller S; Stanyon R; O'Brien PC; Ferguson-Smith MA; Plesker R; Wienberg J
    Chromosoma; 1999 Nov; 108(6):393-400. PubMed ID: 10591999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cytogenetic studies in strepsirrhine primates, Dermoptera and Scandentia.
    Nie W
    Cytogenet Genome Res; 2012; 137(2-4):246-58. PubMed ID: 22614467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research.
    Xu L; Chen SY; Nie WH; Jiang XL; Yao YG
    J Genet Genomics; 2012 Mar; 39(3):131-7. PubMed ID: 22464472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Molecular evidence on the phylogenetic position of tree shrews].
    Xu L; Fan Y; Jiang XL; Yao YG
    Dongwuxue Yanjiu; 2013 Apr; 34(2):70-6. PubMed ID: 23572355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparative chromosome painting].
    Alkalaeva EZ; Trifonov VA; Perel'man PL; Grafodatskiĭ AS
    Genetika; 2002 Aug; 38(8):1034-42. PubMed ID: 12244689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the full-length β-actin sequence and expression profiles in the tree shrew (Tupaia belangeri).
    Zheng Y; Yun C; Wang Q; Smith WW; Leng J
    Int J Mol Med; 2015 Feb; 35(2):519-24. PubMed ID: 25516020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosome painting between human and lorisiform prosimians: evidence for the HSA 7/16 synteny in the primate ancestral karyotype.
    Nie W; O'Brien PC; Fu B; Wang J; Su W; Ferguson-Smith MA; Robinson TJ; Yang F
    Am J Phys Anthropol; 2006 Feb; 129(2):250-9. PubMed ID: 16323198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenomics of species from four genera of New World monkeys by flow sorting and reciprocal chromosome painting.
    Dumas F; Stanyon R; Sineo L; Stone G; Bigoni F
    BMC Evol Biol; 2007 Aug; 7 Suppl 2(Suppl 2):S11. PubMed ID: 17767727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common tree shrews and primates share leukocyte membrane antigens.
    Palley LS; Schlossman SF; Letvin NL
    J Med Primatol; 1984; 13(2):67-71. PubMed ID: 6334161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MHC class I genes of the tree shrew Tupaia belangeri.
    Flügge P; Fuchs E; Günther E; Walter L
    Immunogenetics; 2002 Feb; 53(10-11):984-8. PubMed ID: 11862399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidirectional chromosome painting reveals a remarkable syntenic homology between the greater galagos and the slow loris.
    Stanyon R; Dumas F; Stone G; Bigoni F
    Am J Primatol; 2006 Apr; 68(4):349-59. PubMed ID: 16534804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytogenetic differentiation of two sympatric tree shrew taxa found in the southern part of the Isthmus of Kra.
    Hirai H; Hirai Y; Kawamoto Y; Endo H; Kimura J; Rerkamnuaychoke W
    Chromosome Res; 2002; 10(4):313-27. PubMed ID: 12199145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora.
    Ye J; Biltueva L; Huang L; Nie W; Wang J; Jing M; Su W; Vorobieva NV; Jiang X; Graphodatsky AS; Yang F
    Chromosome Res; 2006; 14(2):151-9. PubMed ID: 16544189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A chromosome painting test of the basal eutherian karyotype.
    Svartman M; Stone G; Page JE; Stanyon R
    Chromosome Res; 2004; 12(1):45-53. PubMed ID: 14984101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Karyotype evolution of eulipotyphla (insectivora): the genome homology of seven sorex species revealed by comparative chromosome painting and banding data.
    Biltueva L; Vorobieva N; Perelman P; Trifonov V; Volobouev V; Panov V; Ilyashenko V; Onischenko S; O'Brien P; Yang F; Ferguson-Smith M; Graphodatsky A
    Cytogenet Genome Res; 2011; 135(1):51-64. PubMed ID: 21912114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative chromosome painting in Aotus reveals a highly derived evolution.
    Ruiz-Herrera A; García F; Aguilera M; Garcia M; Ponsà Fontanals M
    Am J Primatol; 2005 Jan; 65(1):73-85. PubMed ID: 15645457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Repetitive sequences of the tree shrew genome (Mammalia, Scandentia)].
    Ten OA; Borodulina OR; Vasetskiĭ NS; Oparina NIu; Kramerov DA
    Mol Biol (Mosk); 2006; 40(1):74-83. PubMed ID: 16523694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.