BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22488837)

  • 1. A dynamic model for processive transcription elongation and backtracking long pauses by multisubunit RNA polymerases.
    Xie P
    Proteins; 2012 Aug; 80(8):2020-34. PubMed ID: 22488837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic model for transcription elongation and sequence-dependent short pauses by RNA polymerase.
    Xie P
    Biosystems; 2008 Sep; 93(3):199-210. PubMed ID: 18539382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of backtracking long pauses of RNA polymerase.
    Xie P
    Biochim Biophys Acta; 2009 Mar; 1789(3):212-9. PubMed ID: 19101661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-dependent kinetic model for transcription elongation by RNA polymerase.
    Bai L; Shundrovsky A; Wang MD
    J Mol Biol; 2004 Nov; 344(2):335-49. PubMed ID: 15522289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backtracking dynamics of RNA polymerase: pausing and error correction.
    Sahoo M; Klumpp S
    J Phys Condens Matter; 2013 Sep; 25(37):374104. PubMed ID: 23945272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ratchet mechanism of transcription elongation and its control.
    Bar-Nahum G; Epshtein V; Ruckenstein AE; Rafikov R; Mustaev A; Nudler E
    Cell; 2005 Jan; 120(2):183-93. PubMed ID: 15680325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of sequence-specific pausing of bacterial RNA polymerase.
    Kireeva ML; Kashlev M
    Proc Natl Acad Sci U S A; 2009 Jun; 106(22):8900-5. PubMed ID: 19416863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperation between RNA polymerase molecules in transcription elongation.
    Epshtein V; Nudler E
    Science; 2003 May; 300(5620):801-5. PubMed ID: 12730602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA polymerase fidelity and transcriptional proofreading.
    Sydow JF; Cramer P
    Curr Opin Struct Biol; 2009 Dec; 19(6):732-9. PubMed ID: 19914059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner.
    Galburt EA; Grill SW; Wiedmann A; Lubkowska L; Choy J; Nogales E; Kashlev M; Bustamante C
    Nature; 2007 Apr; 446(7137):820-3. PubMed ID: 17361130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking.
    Neuman KC; Abbondanzieri EA; Landick R; Gelles J; Block SM
    Cell; 2003 Nov; 115(4):437-47. PubMed ID: 14622598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of secondary structure on recovery from pauses during early stages of RNA transcription.
    Klopper AV; Bois JS; Grill SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):030904. PubMed ID: 20365690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of σ-dependent pausing by RNA polymerases from Escherichia coli and Thermus aquaticus.
    Zhilina EV; Miropolskaya NA; Bass IA; Brodolin KL; Kulbachinskiy AV
    Biochemistry (Mosc); 2011 Oct; 76(10):1098-106. PubMed ID: 22098235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closing and opening of the RNA polymerase trigger loop.
    Mazumder A; Lin M; Kapanidis AN; Ebright RH
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15642-15649. PubMed ID: 32571927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of RNA-polymerase behavior considering the backtracking state.
    Kor R; Mohammad-Rafiee F
    Soft Matter; 2022 Aug; 18(32):5979-5988. PubMed ID: 35920142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charting a course through RNA polymerase.
    Bell SD; Jackson SP
    Nat Struct Biol; 2000 Sep; 7(9):703-5. PubMed ID: 10966630
    [No Abstract]   [Full Text] [Related]  

  • 17. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase.
    Herbert KM; Zhou J; Mooney RA; Porta AL; Landick R; Block SM
    J Mol Biol; 2010 May; 399(1):17-30. PubMed ID: 20381500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of elongation complexes of bacterial and yeast RNA polymerases.
    Komissarova N; Kireeva ML; Becker J; Sidorenkov I; Kashlev M
    Methods Enzymol; 2003; 371():233-51. PubMed ID: 14712704
    [No Abstract]   [Full Text] [Related]  

  • 19. Transcription elongation: structural basis and mechanisms.
    Nudler E
    J Mol Biol; 1999 Apr; 288(1):1-12. PubMed ID: 10329121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the conformation of the nucleic acid framework of the T7 RNA polymerase elongation complex in solution using low-energy CD and fluorescence spectroscopy.
    Datta K; Johnson NP; von Hippel PH
    J Mol Biol; 2006 Jul; 360(4):800-13. PubMed ID: 16784751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.