BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2248991)

  • 1. Fluorescence lifetime distributions in human superoxide dismutase. Effect of temperature and denaturation.
    Rosato N; Gratton E; Mei G; Finazzi-Agrò A
    Biophys J; 1990 Oct; 58(4):817-22. PubMed ID: 2248991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denaturation of human Cu/Zn superoxide dismutase by guanidine hydrochloride: a dynamic fluorescence study.
    Mei G; Rosato N; Silva N; Rusch R; Gratton E; Savini I; Finazzi-Agrò A
    Biochemistry; 1992 Aug; 31(32):7224-30. PubMed ID: 1510915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molten globule monomers in human superoxide dismutase.
    Silva N; Gratton E; Mei G; Rosato N; Rusch R; Finazzi-Agrò A
    Biophys Chem; 1993 Dec; 48(2):171-82. PubMed ID: 8298055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A time-resolved fluorescence study of human copper-zinc superoxide dismutase.
    Rosato N; Mei G; Gratton E; Bannister JV; Bannister WH; Finazzi-Agrò A
    Biophys Chem; 1990 May; 36(1):41-6. PubMed ID: 2207272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state.
    Swaminathan R; Krishnamoorthy G; Periasamy N
    Biophys J; 1994 Nov; 67(5):2013-23. PubMed ID: 7858139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretation of fluorescence decays in proteins using continuous lifetime distributions.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Jun; 51(6):925-36. PubMed ID: 3607213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence lifetime distributions in proteins.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Apr; 51(4):597-604. PubMed ID: 3580486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apohorseradish peroxidase unfolding and refolding: intrinsic tryptophan fluorescence studies.
    Lasagna M; Gratton E; Jameson DM; Brunet JE
    Biophys J; 1999 Jan; 76(1 Pt 1):443-50. PubMed ID: 9876156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady state and time-resolved fluorescence study of residual structures in an unfolded form of yeast phosphoglycerate kinase.
    Garcia P; Mérola F; Receveur V; Blandin P; Minard P; Desmadril M
    Biochemistry; 1998 May; 37(20):7444-55. PubMed ID: 9585558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved fluorescence of the single tryptophan of Bacillus stearothermophilus phosphofructokinase.
    Kim SJ; Chowdhury FN; Stryjewski W; Younathan ES; Russo PS; Barkley MD
    Biophys J; 1993 Jul; 65(1):215-26. PubMed ID: 8369432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence studies of the conformational dynamics of parvalbumin in solution: lifetime and rotational motions of the single tryptophan residue.
    Ferreira ST
    Biochemistry; 1989 Dec; 28(26):10066-72. PubMed ID: 2620061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing alpha-helical secondary structure at a specific site in model peptides via restriction of tryptophan side-chain rotamer conformation.
    Willis KJ; Neugebauer W; Sikorska M; Szabo AG
    Biophys J; 1994 May; 66(5):1623-30. PubMed ID: 8061211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational heterogeneity of creatine kinase determined from phase resolved fluorometry.
    Grossman SH
    Biophys J; 1991 Mar; 59(3):590-7. PubMed ID: 2049520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The recovery of dipolar relaxation times from fluorescence decays as a tool to probe local dynamics in single tryptophan proteins.
    Mei G; Di Venere A; De Matteis F; Rosato N
    Arch Biochem Biophys; 2003 Sep; 417(2):159-64. PubMed ID: 12941297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of the metal binding mechanism of Escherichia coli manganese superoxide dismutase.
    Whittaker MM; Mizuno K; Bächinger HP; Whittaker JW
    Biophys J; 2006 Jan; 90(2):598-607. PubMed ID: 16258041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of stable monomeric species in the unfolding of Cu,Zn superoxide dismutase from Photobacterium leiognathi.
    Malvezzi-Campeggi F; Stroppolo ME; Mei G; Rosato N; Desideri A
    Arch Biochem Biophys; 1999 Oct; 370(2):201-7. PubMed ID: 10510278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sol-gel confinement on the structural dynamics of the enzyme bovine Cu,Zn superoxide dismutase.
    Pastor I; Prieto M; Mateo CR
    J Phys Chem B; 2008 Nov; 112(47):15021-8. PubMed ID: 18975880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing local secondary structure by fluorescence: time-resolved and circular dichroism studies of highly purified neurotoxins.
    Dahms TE; Szabo AG
    Biophys J; 1995 Aug; 69(2):569-76. PubMed ID: 8527671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic fluorescence in copper proteins. Selected examples.
    Rosato N; Gratton E; Mei G; Savini I; Finazzi Agrò A
    Biol Met; 1990; 3(2):133-6. PubMed ID: 2096899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.