These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2248993)

  • 1. Membrane fluidity changes of liposomes in response to various odorants. Complexity of membrane composition and variety of adsorption sites for odorants.
    Kashiwayanagi M; Suenaga A; Enomoto S; Kurihara K
    Biophys J; 1990 Oct; 58(4):887-95. PubMed ID: 2248993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liposomes as a model for olfactory cells: changes in membrane potential in response to various odorants.
    Nomura T; Kurihara K
    Biochemistry; 1987 Sep; 26(19):6135-40. PubMed ID: 3689767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liposomes having high sensitivity to odorants.
    Enomoto S; Kashiwayanagi M; Kurihara K
    Biochim Biophys Acta; 1991 Feb; 1062(1):7-12. PubMed ID: 1998711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of changed lipid composition on responses of liposomes to various odorants: possible mechanism of odor discrimination.
    Nomura T; Kurihara K
    Biochemistry; 1987 Sep; 26(19):6141-5. PubMed ID: 3689768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane fluidity response to odorants as seen by 2H-NMR and infrared spectroscopy.
    Bouchard M; Boudreau N; Auger M
    Biochim Biophys Acta; 1996 Jul; 1282(2):233-9. PubMed ID: 8703978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for non-receptor odor discrimination using neuroblastoma cells as a model for olfactory cells.
    Kashiwayanagi M; Kurihara K
    Brain Res; 1985 Dec; 359(1-2):97-103. PubMed ID: 4075164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Hypocrellin A induced photodamage to the fluidity of human erythrocyte membranes and membranes of some phospholipid liposomes].
    Du J; Qin J; Zhang X; Cheng L
    Shi Yan Sheng Wu Xue Bao; 1991 Dec; 24(4):369-76. PubMed ID: 1796719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell suspensions from porcine olfactory mucosa. Changes in membrane potential and membrane fluidity in response to various odorants.
    Kashiwayanagi M; Sai K; Kurihara K
    J Gen Physiol; 1987 Mar; 89(3):443-57. PubMed ID: 3559517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peculiar behaviour of rabbit thymocytes in interaction with liposomes of different compositions shown by fluorescence polarization studies, lipid analysis, and uptake of vesicle-entrapped carboxyfluorescein.
    Roozemond RC; Urli DC
    Biochim Biophys Acta; 1982 Aug; 689(3):499-512. PubMed ID: 6982071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective action of cholesterol against changes in membrane fluidity induced by methylparathion.
    Błasiak J
    Acta Biochim Pol; 1993; 40(1):35-8. PubMed ID: 8372561
    [No Abstract]   [Full Text] [Related]  

  • 11. [Influence of linoleic acid (18:2 n-6) and alpha-linolenic acid (18:3 n-3) on the composition, permeability and fluidity of cardiac phospholipids in the rat: study using membrane models (liposomes)].
    Rocquelin G; Yoyo N; Ducruet JM
    Reprod Nutr Dev (1980); 1986; 26(1A):97-112. PubMed ID: 2871601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of urea and trimethylamine N-oxide on fluidity of liposomes and membranes of an elasmobranch.
    Barton KN; Buhr MM; Ballantyne JS
    Am J Physiol; 1999 Feb; 276(2):R397-406. PubMed ID: 9950917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on membrane fluidity and erythrocyte aggregation in equine, bovine and human species.
    Spengler MI; Bertoluzzo SM; Catalani G; Rasia ML
    Clin Hemorheol Microcirc; 2008; 38(3):171-6. PubMed ID: 18239259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relevance of lipid polar headgroups on boron-mediated changes in membrane physical properties.
    Verstraeten SV; Lanoue L; Keen CL; Oteiza PI
    Arch Biochem Biophys; 2005 Jun; 438(1):103-10. PubMed ID: 15882836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of lipid bilayer effective microviscosity and fluidity effect induced by propofol.
    Bahri MA; Heyne BJ; Hans P; Seret AE; Mouithys-Mickalad AA; Hoebeke MD
    Biophys Chem; 2005 Apr; 114(1):53-61. PubMed ID: 15792861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substituted phenols as pollutants that affect membrane fluidity.
    Nunes C; Sousa C; Ferreira H; Lucio M; Lima JL; Tavares J; Cordeiro-da-Silva A; Reis S
    J Environ Biol; 2008 Sep; 29(5):733-8. PubMed ID: 19295073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration and membrane fluidity dependence of odor discrimination in the turtle olfactory system.
    Kashiwayanagi M; Sasaki K; Iida A; Saito H; Kurihara K
    Chem Senses; 1997 Oct; 22(5):553-63. PubMed ID: 9363355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol affects spectrin-phospholipid interactions in a manner different from changes resulting from alterations in membrane fluidity due to fatty acyl chain composition.
    Diakowski W; Ozimek Ł; Bielska E; Bem S; Langner M; Sikorski AF
    Biochim Biophys Acta; 2006 Jan; 1758(1):4-12. PubMed ID: 16464436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective action of cholesterol against changes in membrane fluidity induced by malathion.
    Błasiak J; Walter Z
    Acta Biochim Pol; 1992; 39(1):49-52. PubMed ID: 1441835
    [No Abstract]   [Full Text] [Related]  

  • 20. Physicochemical characterization of plasma membranes from density-separated trout erythrocytes.
    Gabbianelli R; Santroni AM; Falcioni G; Bertoli E; Curatola G; Zolese G
    Arch Biochem Biophys; 1996 Dec; 336(1):157-62. PubMed ID: 8951047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.