BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22489935)

  • 1. Patient-specific surgical simulator for the pre-operative planning of single-incision laparoscopic surgery with bimanual robots.
    Turini G; Moglia A; Ferrari V; Ferrari M; Mosca F
    Comput Aided Surg; 2012; 17(3):103-12. PubMed ID: 22489935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer guidance system for single-incision bimanual robotic surgery.
    Carbone M; Turini G; Petroni G; Niccolini M; Menciassi A; Ferrari M; Mosca F; Ferrari V
    Comput Aided Surg; 2012; 17(4):161-71. PubMed ID: 22687053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms.
    Moglia A; Turini G; Ferrari V; Ferrari M; Mosca F
    Stud Health Technol Inform; 2011; 163():379-85. PubMed ID: 21335823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic surgery, telerobotic surgery, telepresence, and telementoring. Review of early clinical results.
    Ballantyne GH
    Surg Endosc; 2002 Oct; 16(10):1389-402. PubMed ID: 12140630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills.
    Rosen J; Hannaford B; Richards CG; Sinanan MN
    IEEE Trans Biomed Eng; 2001 May; 48(5):579-91. PubMed ID: 11341532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniature robots can assist in laparoscopic cholecystectomy.
    Oleynikov D; Rentschler M; Hadzialic A; Dumpert J; Platt SR; Farritor S
    Surg Endosc; 2005 Apr; 19(4):473-6. PubMed ID: 15742124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preoperative planning system for surgical robotics setup with kinematics and haptics.
    Hayashibe M; Suzuki N; Hashizume M; Kakeji Y; Konishi K; Suzuki S; Hattori A
    Int J Med Robot; 2005 Jan; 1(2):76-85. PubMed ID: 17518381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotics and general surgery.
    Jacob BP; Gagner M
    Surg Clin North Am; 2003 Dec; 83(6):1405-19. PubMed ID: 14712875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surgery with cooperative robots.
    Lehman AC; Berg KA; Dumpert J; Wood NA; Visty AQ; Rentschler ME; Platt SR; Farritor SM; Oleynikov D
    Comput Aided Surg; 2008 Mar; 13(2):95-105. PubMed ID: 18317958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced da Vinci Surgical System simulator for surgeon training and operation planning.
    Sun LW; Van Meer F; Schmid J; Bailly Y; Thakre AA; Yeung CK
    Int J Med Robot; 2007 Sep; 3(3):245-51. PubMed ID: 17576641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dexterous miniature robot for advanced minimally invasive surgery.
    Lehman AC; Wood NA; Farritor S; Goede MR; Oleynikov D
    Surg Endosc; 2011 Jan; 25(1):119-23. PubMed ID: 20549244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotics, telesurgery and telementoring--their position in modern urological laparoscopy.
    Rassweiler J; Frede T
    Arch Esp Urol; 2002; 55(6):610-28. PubMed ID: 12224160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hidden Markov models of minimally invasive surgery.
    Rosen J; Richards C; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2000; 70():279-85. PubMed ID: 10977557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tele-surgery simulation with a patient organ model for robotic surgery training.
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Konishi K; Kakeji Y; Hashizume M
    Int J Med Robot; 2005 Dec; 1(4):80-8. PubMed ID: 17518408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From medical images to minimally invasive intervention: Computer assistance for robotic surgery.
    Lee SL; Lerotic M; Vitiello V; Giannarou S; Kwok KW; Visentini-Scarzanella M; Yang GZ
    Comput Med Imaging Graph; 2010 Jan; 34(1):33-45. PubMed ID: 19699056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic arm enhancement to accommodate improved efficiency and decreased resource utilization in complex minimally invasive surgical procedures.
    Geis WP; Kim HC; Brennan EJ; McAfee PC; Wang Y
    Stud Health Technol Inform; 1996; 29():471-81. PubMed ID: 10172847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotics for surgery.
    Howe RD; Matsuoka Y
    Annu Rev Biomed Eng; 1999; 1():211-40. PubMed ID: 11701488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotics in urological surgery: review of current status and maneuverability, and comparison of robot-assisted and traditional laparoscopy.
    Singh I
    Comput Aided Surg; 2011; 16(1):38-45. PubMed ID: 21198426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-incision laparoscopic cholecystectomy in children using standard straight instruments: a surgeon's early experience.
    Garcia-Henriquez N; Shah SR; Kane TD
    J Laparoendosc Adv Surg Tech A; 2011; 21(6):555-9. PubMed ID: 21476928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.