These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 2248996)

  • 1. Subpicosecond resonance Raman spectroscopy of carbonmonoxy- and oxyhemoglobin.
    van den Berg R; el-Sayed MA
    Biophys J; 1990 Oct; 58(4):931-7. PubMed ID: 2248996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved Raman spectroscopy with subpicosecond resolution: vibrational cooling and delocalization of strain energy in photodissociated (carbonmonoxy)hemoglobin.
    Petrich JW; Martin JL; Houde D; Poyart C; Orszag A
    Biochemistry; 1987 Dec; 26(24):7914-23. PubMed ID: 3427114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman characterization of the 7-ns photoproduct of (carbonmonoxy)hemoglobin: implications for hemoglobin dynamics.
    Dasgupta S; Spiro TG
    Biochemistry; 1986 Oct; 25(20):5941-8. PubMed ID: 3790496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosecond time-resolved absorption studies of human oxyhemoglobin photolysis intermediates.
    Ghelichkhani E; Goldbeck RA; Lewis JW; Kliger DS
    Biophys J; 1996 Sep; 71(3):1596-604. PubMed ID: 8874033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diamagnetism of human apo-, oxy-, and (carbonmonoxy)hemoglobin.
    Philo JS; Dreyer U; Schuster TM
    Biochemistry; 1984 Feb; 23(5):865-72. PubMed ID: 6712929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geminate recombination of O2 and hemoglobin.
    Chernoff DA; Hochstrasser RM; Steele AW
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5606-10. PubMed ID: 6932659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared spectra of Scapharca homodimeric hemoglobin: characterization of the deoxy and photodissociated derivatives.
    Huang J; Leone M; Boffi A; Friedman JM; Chiancone E
    Biophys J; 1996 Jun; 70(6):2924-9. PubMed ID: 8744330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picosecond resonance Raman evidence for unrelaxed heme in the (carbonmonoxy)myoglobin photoproduct.
    Dasgupta S; Spiro TG; Johnson CK; Dalickas GA; Hochstrasser RM
    Biochemistry; 1985 Sep; 24(20):5295-7. PubMed ID: 4074696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the local heme environment of (carbonmonoxy)hemoglobin to protein dehydration.
    Findsen EW; Simons P; Ondrias MR
    Biochemistry; 1986 Dec; 25(24):7912-7. PubMed ID: 3801449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast relaxation in picosecond photolysis of nitrosylhemoglobin.
    Cornelius PA; Hochstrasser RM; Steele AW
    J Mol Biol; 1983 Jan; 163(1):119-28. PubMed ID: 6834427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric kinetics and equilibria differ for carbon monoxide and oxygen binding to hemoglobin.
    Zhang NQ; Ferrone FA; Martino AJ
    Biophys J; 1990 Aug; 58(2):333-40. PubMed ID: 2207241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond resonance Raman spectroscopic evidence for excited-state spin conversion in carbonmonoxy-hemoglobin photolysis.
    Terner J; Stong JD; Spiro TG; Nagumo M; Nicol M; El-Sayed MA
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1313-7. PubMed ID: 16592986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations indicate that deoxyhemoglobin, oxyhemoglobin, carboxyhemoglobin, and glycated hemoglobin under compression and shear exhibit an anisotropic mechanical behavior.
    Yesudasan S; Wang X; Averett RD
    J Biomol Struct Dyn; 2018 May; 36(6):1417-1429. PubMed ID: 28441918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodissociation of heme distal methionine in ferrous cytochrome C revealed by subpicosecond time-resolved resonance Raman spectroscopy.
    Cianetti S; NĂ©grerie M; Vos MH; Martin JL; Kruglik SG
    J Am Chem Soc; 2004 Nov; 126(43):13932-3. PubMed ID: 15506748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast spectroscopy of oxyhemoglobin during photodissociation.
    Yabushita A; Kobayashi T
    J Phys Chem B; 2010 Sep; 114(35):11654-8. PubMed ID: 20712382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels.
    Dash RK; Bassingthwaighte JB
    Ann Biomed Eng; 2010 Apr; 38(4):1683-701. PubMed ID: 20162361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand dynamics in the photodissociation of carboxyhemoglobin by subpicosecond transient infrared spectroscopy.
    Rothberg L; Jedju TM; Austin RH
    Biophys J; 1990 Feb; 57(2):369-73. PubMed ID: 2317555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved resonance raman spectroscopy of hemoglobin derivatives: heme structure changes in 7 nanoseconds.
    Woodruff WH; Farquharson S
    Science; 1978 Sep; 201(4358):831-3. PubMed ID: 684409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman investigation of the effects of copper binding to iron-mesoporphyrin.histidine-rich glycoprotein complexes.
    Larsen RW; Nunez DJ; Morgan WT; Muhoberac BB; Ondrias MR
    Biophys J; 1992 Apr; 61(4):1007-17. PubMed ID: 1581496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved spectroscopy of hemoglobin and its complexes with subpicosecond optical pulses.
    Shank CV; Ippen EP; Bersohn R
    Science; 1976 Jul; 193(4247):50-1. PubMed ID: 935853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.