These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 2249009)

  • 21. Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis.
    Huang L; Wang J; Nie W; Su W; Yang F
    Chromosome Res; 2006; 14(6):637-47. PubMed ID: 16964570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Standard karyotype and chromosomal evolution of the fallow deer (Dama dama L.).
    Rubini M; Negri E; Fontana F
    Cytobios; 1990; 64(258-259):155-61. PubMed ID: 2090390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA cloning and hybridization in deer species supporting the chromosome field theory.
    Lima-de-Faria A; Arnason U; Widegren B; Isaksson M; Essen-Möller J; Jaworska H
    Biosystems; 1986; 19(3):185-212. PubMed ID: 3022841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization of cloned, repetitive DNA sequences in deer species and its implications for maintenance of gene territory.
    Scherthan H; Arnason U; Lima-de-Faria A
    Hereditas; 1990; 112(1):13-20. PubMed ID: 2361878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis).
    Yang F; Müller S; Just R; Ferguson-Smith MA; Wienberg J
    Genomics; 1997 Feb; 39(3):396-401. PubMed ID: 9119378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexibility on the karyotype evolution in bitterlings (Pisces, Cyprinidae).
    Ueda T; Naoi H; Arai R
    Genetica; 2001; 111(1-3):423-32. PubMed ID: 11841185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping.
    Chi JX; Huang L; Nie W; Wang J; Su B; Yang F
    Chromosoma; 2005 Aug; 114(3):167-72. PubMed ID: 16010580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autosomal and sex chromosomal polymorphisms with multiple rearrangements and a new karyotype in the genus Rhipidomys (Sigmodontinae, Rodentia).
    Silva MJ; Yonenaga-Yassuda Y
    Hereditas; 1999; 131(3):211-20. PubMed ID: 10783531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Karyotypes of three shrew species (Soriculus nigrescens, Episoriculus caudatus and Episoriculus sacratus) from Nepal.
    Motokawa M; Harada M; Mekada K; Shrestha KC
    Integr Zool; 2008 Sep; 3(3):180-5. PubMed ID: 21396067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrapopulation Chromosomal Polymorphism in Mazama gouazoubira (Cetartiodactyla; Cervidae): The Emergence of a New Species?
    Valeri MP; Tomazella IM; Duarte JMB
    Cytogenet Genome Res; 2018; 154(3):147-152. PubMed ID: 29656282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Telomeric sequences localization and G-banding patterns in the identification of a polymorphic chromosomal rearrangement in the rodent Akodon cursor (2n=14,15 and 16).
    Fagundes V; Vianna-Morgante AM; Yonenaga-Yassuda Y
    Chromosome Res; 1997 Jun; 5(4):228-32. PubMed ID: 9244449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytogenetic Mapping of Cattle BAC Probes for the Hypothetical Ancestral Karyotype of the Family Cervidae.
    Bernegossi AM; Vozdova M; Cernohorska H; Kubickova S; Galindo DJ; Kadlcikova D; Rubes J; Duarte JMB
    Cytogenet Genome Res; 2022; 162(3):140-147. PubMed ID: 35981520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Translocations of acrocentric chromosomes and their implications in the evolution of sheep (Ovis).
    Bunch TD; Foote WC; Spillett JJ
    Cytogenet Cell Genet; 1976; 17(3):122-36. PubMed ID: 991654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A molecular cytogenetic analysis of the tribe Bovini (Artiodactyla: Bovidae: Bovinae) with an emphasis on sex chromosome morphology and NOR distribution.
    Gallagher DS; Davis SK; De Donato M; Burzlaff JD; Womack JE; Taylor JF; Kumamoto AT
    Chromosome Res; 1999; 7(6):481-92. PubMed ID: 10560971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative gene mapping in cattle, Indian muntjac, and Chinese muntjac by fluorescence in situ hybridization.
    Murmann AE; Mincheva A; Scheuermann MO; Gautier M; Yang F; Buitkamp J; Strissel PL; Strick R; Rowley JD; Lichter P
    Genetica; 2008 Nov; 134(3):345-51. PubMed ID: 18283540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tandem and centric fusions in the chromosomal evolution of the South American phyllotines of the genus Auliscomys (Rodentia, cricetidae).
    Walker LI; Spotorno AE
    Cytogenet Cell Genet; 1992; 61(2):135-40. PubMed ID: 1395723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative karyotype analysis of the red brocket deer (M. americana sensu lato and M. rufa) complex: evidence of drastic chromosomal evolution and implications on speciation process.
    Bernegossi AM; Galindo DJ; Peres PHF; Vozdova M; Cernohorska H; Kubickova S; Kadlcikova D; Rubes J; Duarte JMB
    J Appl Genet; 2024 Sep; 65(3):601-614. PubMed ID: 38662189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence analysis and phylogeny of deer (Cervidae) MtDNA control regions.
    Shi YF; Shan XN; Li J; Shi TY; Zheng AL
    Yi Chuan Xue Bao; 2004 Apr; 31(4):395-402. PubMed ID: 15487510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytogenetic comparison between Vietnamese sika deer and cattle: R-banded karyotypes and FISH mapping.
    Bonnet A; Thévenon S; Claro F; Gautier M; Hayes H
    Chromosome Res; 2001; 9(8):673-87. PubMed ID: 11778690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative Analysis of Directionality in Mammalian Karyotype Evolution.
    Imai HT; Crozier RH
    Am Nat; 1980 Oct.; 116(4):537-569. PubMed ID: 29519129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.