These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 22490166)

  • 21. Squalene in oils and fats from domestic and commercial fryings of potatoes.
    Kalogeropoulos N; Andrikopoulos NK
    Int J Food Sci Nutr; 2004 Mar; 55(2):125-9. PubMed ID: 14985184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of Oil Types and Prolonged Frying Time on the Volatile Compounds and Sensory Properties of French Fries.
    Xu L; Ji X; Wu G; Karrar E; Yao L; Wang X
    J Oleo Sci; 2021 Jul; 70(7):885-899. PubMed ID: 34121029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Picual olive ripening on virgin olive oil alteration and stability during potato frying.
    Olivero-David R; Mena C; Pérez-Jimenez MA; Sastre B; Bastida S; Márquez-Ruiz G; Sánchez-Muniz FJ
    J Agric Food Chem; 2014 Dec; 62(48):11637-46. PubMed ID: 25390818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of traditional Chinese cooking methods on fatty acid profiles of vegetable oils.
    Cui Y; Hao P; Liu B; Meng X
    Food Chem; 2017 Oct; 233():77-84. PubMed ID: 28530614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of frying oils' fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process.
    Li X; Li J; Wang Y; Cao P; Liu Y
    Food Chem; 2017 Dec; 237():98-105. PubMed ID: 28764095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of potato cultivar, frying oil and sample pre-treatments on the contamination of French fries by 3-monochloropropane-1,2-diol fatty acid esters.
    Arisseto AP; Silva WC; Marcolino PFC; Scaranelo GR; Berbari SAG; de Oliveira Miguel AMR; Vicente E
    Food Res Int; 2019 Oct; 124():43-48. PubMed ID: 31466649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of Oil Uptake and Fatty Acid Composition of Pre-treated Potato Slices Fried in Sunflower and Olive Oils.
    Alkaltham MS; Özcan MM; Uslu N; Salamatullah AM; Hayat K
    J Oleo Sci; 2020 Mar; 69(3):185-190. PubMed ID: 32051358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of raw materials on thermo-oxidative stability and glycidyl ester content of palm oil during frying.
    Aniołowska MA; Kita AM
    J Sci Food Agric; 2016 Apr; 96(6):2257-64. PubMed ID: 26198288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.
    Peng CY; Lan CH; Lin PC; Kuo YC
    J Hazard Mater; 2017 Feb; 324(Pt B):160-167. PubMed ID: 27780622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frying stability of rapeseed Kizakinonatane (Brassica napus) oil in comparison with canola oil.
    Ma JK; Zhang H; Tsuchiya T; Akiyama Y; Chen JY
    Food Sci Technol Int; 2015 Apr; 21(3):163-74. PubMed ID: 24474189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Provenance of the oil in par-fried French fries after finish frying.
    Al-Khusaibi M; Gordon MH; Lovegrove JA; Niranjan K
    J Food Sci; 2012 Jan; 77(1):E32-6. PubMed ID: 22260106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes produced in oils during vacuum and traditional frying of potato chips.
    Crosa MJ; Skerl V; Cadenazzi M; Olazábal L; Silva R; Suburú G; Torres M
    Food Chem; 2014 Mar; 146():603-7. PubMed ID: 24176387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Furans Formation and Volatile Aldehydes Profiles of Four Different Vegetable Oils During Thermal Oxidation.
    Wang Y; Zhu M; Mei J; Luo S; Leng T; Chen Y; Nie S; Xie M
    J Food Sci; 2019 Jul; 84(7):1966-1978. PubMed ID: 31206695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation.
    Bhardwaj S; Passi SJ; Misra A; Pant KK; Anwar K; Pandey RM; Kardam V
    Food Chem; 2016 Dec; 212():663-70. PubMed ID: 27374582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of fish and oil nature on frying process and nutritional product quality.
    Ansorena D; Guembe A; Mendizábal T; Astiasarán I
    J Food Sci; 2010 Mar; 75(2):H62-7. PubMed ID: 20492236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep-frying food in extra virgin olive oil: a study by (1)H nuclear magnetic resonance of the influence of food nature on the evolving composition of the frying medium.
    Martínez-Yusta A; Guillén MD
    Food Chem; 2014 May; 150():429-37. PubMed ID: 24360472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of acrolein in french fries by solid-phase microextraction gas chromatography and mass spectrometry.
    Osório VM; de Lourdes Cardeal Z
    J Chromatogr A; 2011 May; 1218(21):3332-6. PubMed ID: 21168848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The intake of fried virgin olive or sunflower oils differentially induces oxidative stress in rat liver microsomes.
    Quiles JL; Huertas JR; Battino M; Ramírez-Tortosa MC; Cassinello M; Mataix J; Lopez-Frias M; Mañas M
    Br J Nutr; 2002 Jul; 88(1):57-65. PubMed ID: 12117428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quality evaluation of noble mixed oil blended with palm and canola oil.
    Choi H; Lee E; Lee KG
    J Oleo Sci; 2014; 63(7):653-60. PubMed ID: 24976612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a sunflower oil used for frying by different analytical indexes and column and gas chromatography.
    Sánchez-Muniz FJ; Cuesta C; Garrido-Polonio MC
    Z Ernahrungswiss; 1994 Mar; 33(1):16-23. PubMed ID: 8197784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.