These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 22490552)

  • 1. Applicability of independent component analysis on high-density microelectrode array recordings.
    Jäckel D; Frey U; Fiscella M; Franke F; Hierlemann A
    J Neurophysiol; 2012 Jul; 108(1):334-48. PubMed ID: 22490552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.
    Leibig C; Wachtler T; Zeck G
    J Neurosci Methods; 2016 Sep; 271():1-13. PubMed ID: 27317497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-neuron action potentials recorded with tetrode are not instantaneous mixtures of single neuronal action potentials.
    Shiraishi Y; Katayama N; Takahashi T; Karashima A; Nakao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4019-22. PubMed ID: 19964095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent Component Analysis for Fully Automated Multi-Electrode Array Spike Sorting.
    Buccino AP; Hagen E; Einevoll GT; Hafliger PD; Cauwenbergh G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2627-2630. PubMed ID: 30440947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
    Takahashi S; Anzai Y; Sakurai Y
    J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural spike sorting using iterative ICA and a deflation-based approach.
    Tiganj Z; Mboup M
    J Neural Eng; 2012 Dec; 9(6):066002. PubMed ID: 23075499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic spike sorting for high-density microelectrode arrays.
    Diggelmann R; Fiscella M; Hierlemann A; Franke F
    J Neurophysiol; 2018 Dec; 120(6):3155-3171. PubMed ID: 30207864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Retinal Ganglion Cell Firing Patterns Using Clustering Analysis Supplied with Failure Diagnosis.
    Ghahari A; Kumar SR; Badea TC
    Int J Neural Syst; 2018 Oct; 28(8):1850008. PubMed ID: 29631502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.
    Regalia G; Coelli S; Biffi E; Ferrigno G; Pedrocchi A
    Comput Intell Neurosci; 2016; 2016():8416237. PubMed ID: 27239191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection.
    Fiscella M; Farrow K; Jones IL; Jäckel D; Müller J; Frey U; Bakkum DJ; Hantz P; Roska B; Hierlemann A
    J Neurosci Methods; 2012 Oct; 211(1):103-13. PubMed ID: 22939921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Employing ICA and SOM for spike sorting of multielectrode recordings from CNS.
    Hermle T; Schwarz C; Bogdan M
    J Physiol Paris; 2004; 98(4-6):349-56. PubMed ID: 16290927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of independent component analysis for rapid spike sorting of optical recording data.
    Hill ES; Moore-Kochlacs C; Vasireddi SK; Sejnowski TJ; Frost WN
    J Neurophysiol; 2010 Dec; 104(6):3721-31. PubMed ID: 20861441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering.
    Oliynyk A; Bonifazzi C; Montani F; Fadiga L
    BMC Neurosci; 2012 Aug; 13():96. PubMed ID: 22871125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEArec: A Fast and Customizable Testbench Simulator for Ground-truth Extracellular Spiking Activity.
    Buccino AP; Einevoll GT
    Neuroinformatics; 2021 Jan; 19(1):185-204. PubMed ID: 32648042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computationally efficient simulation of extracellular recordings with multielectrode arrays.
    Thorbergsson PT; Garwicz M; Schouenborg J; Johansson AJ
    J Neurosci Methods; 2012 Oct; 211(1):133-44. PubMed ID: 22960053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike sorting with hidden Markov models.
    Herbst JA; Gammeter S; Ferrero D; Hahnloser RH
    J Neurosci Methods; 2008 Sep; 174(1):126-34. PubMed ID: 18619490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of background neuronal activity and noise in human intracranial microwire recordings.
    Steinmetz PN
    J Neurosci Methods; 2024 Feb; 402():110017. PubMed ID: 38036184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate signal-source localization in brain slices by means of high-density microelectrode arrays.
    Obien MEJ; Hierlemann A; Frey U
    Sci Rep; 2019 Jan; 9(1):788. PubMed ID: 30692552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of multiunit signals by independent component analysis in complex-valued time-frequency domain.
    Shiraishi Y; Katayama N; Karashima A; Nakao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4410-3. PubMed ID: 22255317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.