These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22490558)

  • 1. Two-stage AMPA receptor trafficking in classical conditioning and selective role for glutamate receptor subunit 4 (tGluA4) flop splice variant.
    Zheng Z; Sabirzhanov B; Keifer J
    J Neurophysiol; 2012 Jul; 108(1):101-11. PubMed ID: 22490558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of glutamate receptor subunit 4 (GLUA4) and its alternatively spliced isoforms in turtle brain.
    Sabirzhanov B; Keifer J
    J Mol Neurosci; 2011 Jul; 44(3):159-72. PubMed ID: 20549383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit-specific synaptic delivery of AMPA receptors by auxiliary chaperone proteins TARPγ8 and GSG1L in classical conditioning.
    Keifer J; Tiwari NK; Buse L; Zheng Z
    Neurosci Lett; 2017 Apr; 645():53-59. PubMed ID: 28219790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential delivery of synaptic GluA1- and GluA4-containing AMPA receptors (AMPARs) by SAP97 anchored protein complexes in classical conditioning.
    Zheng Z; Keifer J
    J Biol Chem; 2014 Apr; 289(15):10540-10550. PubMed ID: 24567325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKA has a critical role in synaptic delivery of GluR1- and GluR4-containing AMPARs during initial stages of acquisition of in vitro classical conditioning.
    Zheng Z; Keifer J
    J Neurophysiol; 2009 May; 101(5):2539-49. PubMed ID: 19261706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase C-dependent and independent signaling pathways regulate synaptic GluR1 and GluR4 AMPAR subunits during in vitro classical conditioning.
    Zheng Z; Keifer J
    Neuroscience; 2008 Oct; 156(4):872-84. PubMed ID: 18809472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of GLUR4-containing AMPA receptors to synaptic sites during in vitro classical conditioning.
    Mokin M; Keifer J
    Neuroscience; 2004; 128(2):219-28. PubMed ID: 15350635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinate action of pre- and postsynaptic brain-derived neurotrophic factor is required for AMPAR trafficking and acquisition of in vitro classical conditioning.
    Li W; Keifer J
    Neuroscience; 2008 Aug; 155(3):686-97. PubMed ID: 18639615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic localization of GluR4-containing AMPARs and Arc during acquisition, extinction, and reacquisition of in vitro classical conditioning.
    Keifer J; Zheng Z; Mokin M
    Neurobiol Learn Mem; 2008 Sep; 90(2):301-8. PubMed ID: 18514553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic Mechanisms of Delay Eyeblink Classical Conditioning: AMPAR Trafficking and Gene Regulation in an In Vitro Model.
    Keifer J
    Mol Neurobiol; 2023 Dec; 60(12):7088-7103. PubMed ID: 37531025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BDNF-induced synaptic delivery of AMPAR subunits is differentially dependent on NMDA receptors and requires ERK.
    Li W; Keifer J
    Neurobiol Learn Mem; 2009 Mar; 91(3):243-9. PubMed ID: 18977306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage of proBDNF to BDNF by a tolloid-like metalloproteinase is required for acquisition of in vitro eyeblink classical conditioning.
    Keifer J; Sabirzhanov BE; Zheng Z; Li W; Clark TG
    J Neurosci; 2009 Nov; 29(47):14956-64. PubMed ID: 19940191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAPK signaling pathways mediate AMPA receptor trafficking in an in vitro model of classical conditioning.
    Keifer J; Zheng ZQ; Zhu D
    J Neurophysiol; 2007 Mar; 97(3):2067-74. PubMed ID: 17202235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro classical conditioning of the turtle eyeblink reflex: approaching cellular mechanisms of acquisition.
    Keifer J
    Cerebellum; 2003; 2(1):55-61. PubMed ID: 12882235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GluA4 facilitates cerebellar expansion coding and enables associative memory formation.
    Kita K; Albergaria C; Machado AS; Carey MR; Müller M; Delvendahl I
    Elife; 2021 Jul; 10():. PubMed ID: 34219651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of silent synapses into the active pool by selective GluR1-3 and GluR4 AMPAR trafficking during in vitro classical conditioning.
    Mokin M; Zheng Z; Keifer J
    J Neurophysiol; 2007 Sep; 98(3):1278-86. PubMed ID: 17596423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of AMPA-specific receptors: subunit composition, editing, and calcium influx determination in small amounts of tissue.
    Lee JC; Greig A; Ravindranathan A; Parks TN; Rao MS
    Brain Res Brain Res Protoc; 1998 Nov; 3(2):142-54. PubMed ID: 9813290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro eye-blink classical conditioning is NMDA receptor dependent and involves redistribution of AMPA receptor subunit GluR4.
    Keifer J
    J Neurosci; 2001 Apr; 21(7):2434-41. PubMed ID: 11264317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ hybridization analysis of flip/flop splice variants of AMPA-type glutamate receptor subunits in the rat parabrachial and Kölliker-Fuse nuclei.
    Guthmann A; Herbert H
    Brain Res Mol Brain Res; 1999 Dec; 74(1-2):145-57. PubMed ID: 10640685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-binding domain determines endoplasmic reticulum exit of AMPA receptors.
    Coleman SK; Möykkynen T; Hinkkuri S; Vaahtera L; Korpi ER; Pentikäinen OT; Keinänen K
    J Biol Chem; 2010 Nov; 285(46):36032-9. PubMed ID: 20837486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.