These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 224906)

  • 1. Magnesium ion dependent rabbit skeletal muscle myosin guanosine and thioguanosine triphosphatase mechanism and a novel guanosine diphosphatase reaction.
    Eccleston JF; Trentham DR
    Biochemistry; 1979 Jun; 18(13):2896-904. PubMed ID: 224906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of chromophoric nucleotides with subfragment 1 of myosin.
    Eccleston JF; Trentham DR
    Biochem J; 1977 Apr; 163(1):15-29. PubMed ID: 869914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction mechanism of the magnesium ion-dependent adenosine triphosphatase of frog muscle myosin and subfragment 1.
    Ferenczi MA; Homsher E; Simmons RM; Trentham DR
    Biochem J; 1978 Apr; 171(1):165-75. PubMed ID: 148277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go.
    Higashijima T; Ferguson KM; Smigel MD; Gilman AG
    J Biol Chem; 1987 Jan; 262(2):757-61. PubMed ID: 3027067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction.
    Bagshaw CR; Trentham DR
    Biochem J; 1974 Aug; 141(2):331-49. PubMed ID: 4281653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular dichroic spectra of 6-thioguanosine nucleotides and their complexes with myosin subfragment 1.
    Eccleston JF; Bayley PM
    Biochemistry; 1980 Oct; 19(22):5050-6. PubMed ID: 7459323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The magnesium-ion-dependent adenosine triphosphatase of bovine cardiac Myosin and its subfragment-1.
    Taylor RS; Weeds AG
    Biochem J; 1976 Nov; 159(2):301-15. PubMed ID: 136961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by beta-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles.
    Brandt DR; Ross EM
    J Biol Chem; 1986 Feb; 261(4):1656-64. PubMed ID: 2868003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-bound adenosine 5'-triphosphate: properties of a key intermediate of the magnesium-dependent subfragment 1 adenosinetriphosphatase from rabbit skeletal muscle.
    Geeves MA; Trentham DR
    Biochemistry; 1982 May; 21(11):2782-9. PubMed ID: 6124272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state magnesium ion-adenosine triphosphatase activities of myosin and its subfragment 1 derivative.
    Schliselfeld LH
    Biochim Biophys Acta; 1980 Nov; 593(1):39-50. PubMed ID: 6107126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of substrate concentration on the Mg-adenosine triphosphatase activity of myosin.
    Nihei T; Filipenko CA
    Can J Biochem; 1975 Dec; 53(12):1282-7. PubMed ID: 130198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of tubulin-myosin interaction on guanosine-5'-triphosphate hydrolysis by myosin.
    Fujii T; Kumasaka M; Kondo Y; Hachimori A; Ohki K
    Chem Pharm Bull (Tokyo); 1981 Sep; 29(9):2639-45. PubMed ID: 6129929
    [No Abstract]   [Full Text] [Related]  

  • 13. Separation of myosin subfragment 1 into two fractions, one having the burst site and the other having the non-burst site.
    Taniguchi S; Tawada K
    J Biochem; 1976 Oct; 80(4):853-60. PubMed ID: 137898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic analysis of the hydrolysis of GTP by p21N-ras. The basal GTPase mechanism.
    Neal SE; Eccleston JF; Hall A; Webb MR
    J Biol Chem; 1988 Dec; 263(36):19718-22. PubMed ID: 2848838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins.
    Mukhopadhyay S; Ross EM
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9539-44. PubMed ID: 10449728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concerning the location of the GTP hydrolysis site on microtubules.
    Caplow M; Shanks J; Brylawski BP
    Can J Biochem Cell Biol; 1985 Jun; 63(6):422-9. PubMed ID: 2994860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ha-ras proteins exhibit GTPase activity: point mutations that activate Ha-ras gene products result in decreased GTPase activity.
    Manne V; Bekesi E; Kung HF
    Proc Natl Acad Sci U S A; 1985 Jan; 82(2):376-80. PubMed ID: 2982154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the interaction of rabbit skeletal muscle adenylate deaminase with myosin subfragments. A kinetically regulated system.
    Barshop BA; Frieden C
    J Biol Chem; 1984 Jan; 259(1):60-6. PubMed ID: 6368542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient kinetic investigation of GTP hydrolysis catalyzed by interferon-gamma-induced hGBP1 (human guanylate binding protein 1).
    Kunzelmann S; Praefcke GJ; Herrmann C
    J Biol Chem; 2006 Sep; 281(39):28627-35. PubMed ID: 16873363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elementary steps of the actin-activated ATPase reaction of cardiac muscle myosin subfragment-1.
    Miyata M; Yasui M; Arata T; Inoue A
    J Biochem; 1988 May; 103(5):750-4. PubMed ID: 2972697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.