These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 224916)

  • 41. Phenylalanyl-tRNA synthetase from E. coli: synergistic coupling between the sites for binding of L-phenylalanine and ATP.
    Holler E; Bartmann P; Hanke T; Kosakowski HM
    Biochem Biophys Res Commun; 1973 Aug; 53(4):1205-12. PubMed ID: 4584021
    [No Abstract]   [Full Text] [Related]  

  • 42. [Modification of the alpha-subunit of phenylalanyl-tRNA synthetase from E. coli MRE-600 with N-chlorambucilyl-phenylalanyl-tRNA].
    Lavrik OI; Khovyreva SN
    Biokhimiia; 1979 Mar; 44(3):570-2. PubMed ID: 380662
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs.
    Freist W; Sternbach H; Cramer F
    Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Phenylalanyl-tRNA synthetase (PRS) from Escherichia coli: binding of substrates and effectors].
    Kosakowski MH; Bartmann P; Hanke T; Holler E
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1539. PubMed ID: 4346464
    [No Abstract]   [Full Text] [Related]  

  • 45. [Effect of diadenosine oligophosphates (Ap4A and Ap3A) and their phosphonate analogs on catalytic properties of phenylalanyl-tRNA synthetase from E. coli].
    Biriukov AP; Zakharova OD; Lavrik OI
    Bioorg Khim; 1987 Sep; 13(9):1164-9. PubMed ID: 3322289
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic demonstration of the intermediate role of aminoacyl-adenylate-enzyme in the formation of valyl transfer ribonucleic acid.
    Midelfort CF; Chakraburtty K; Steinschneider A; Mehler AH
    J Biol Chem; 1975 May; 250(10):3866-73. PubMed ID: 165186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Interaction between tRNA-recognizing sites of phenylalanyl-tRNA synthetase from Escherichia coli MRE-600].
    Gorshkova II; Lavrik OI
    Mol Biol (Mosk); 1982; 16(5):984-90. PubMed ID: 6755224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of the kinetic mechanism of arginyl-tRNA synthetase.
    Airas RK
    Biochim Biophys Acta; 2006 Feb; 1764(2):307-19. PubMed ID: 16427818
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes in the solution structure of yeast phenylalanine transfer ribonucleic acid associated with aminoacylation and magnesium binding.
    Potts RO; Ford NC; Fournier MJ
    Biochemistry; 1981 Mar; 20(6):1653-9. PubMed ID: 7013797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates.
    Kern D; Lapointe J
    Biochemistry; 1979 Dec; 18(26):5809-18. PubMed ID: 229901
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Alkylation of tRNA-Phe free and bound to phenylalanyl-tRNA synthetase with 4-(N-2-chloroethyl-N-methylamino)benzylamine].
    Vlasov VV; Grishaev MP; Mamaev SM; Chizhikov VE; Khodyreva SN
    Mol Biol (Mosk); 1981; 15(1):45-53. PubMed ID: 7038443
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic analysis of an E.coli phenylalanine-tRNA synthetase mutant.
    Goodman R; Schwartz I
    Nucleic Acids Res; 1988 Aug; 16(15):7477-86. PubMed ID: 3045758
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of the isoleucyl-tRNA synthetase reaction by total rate equations. Magnesium and spermidine in the tRNA kinetics.
    Airas RK
    Eur J Biochem; 1992 Dec; 210(2):443-50. PubMed ID: 1459129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influences of amino acid, ATP, pyrophosphate and tRNA on binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600.
    Flossdorf J; Marutzky R; Kula MR
    Nucleic Acids Res; 1977 Jul; 4(7):2455-66. PubMed ID: 198742
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Equilibrium measurements of cognate and noncognate interactions between aminoacyl transfer RNA synthetases and transfer RNA.
    Lam SS; Schimmel PR
    Biochemistry; 1975 Jun; 14(12):2775-80. PubMed ID: 238575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase.
    Ibba M; Kast P; Hennecke H
    Biochemistry; 1994 Jun; 33(23):7107-12. PubMed ID: 8003476
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Yeast phenylalanyl-tRNA synthetase. Properties of the histidyl residues.
    Raffin JP; Remy P
    Biochim Biophys Acta; 1978 Aug; 520(1):164-74. PubMed ID: 359050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acceptor activity of tRNAPhe from yeasts under special conditions of aminoacylation.
    Belchev B; Yaneva M
    Mol Biol (Mosk); 1976; 10(4):663-7. PubMed ID: 15212
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Chemical modification of the complex of tRNA Phe with phenylalanyl-tRNA synthetase from Escherichia coli].
    Ankilova VN; Vlasov VV; Mamaev SV; Nuzhdina NA
    Mol Biol (Mosk); 1979; 13(5):994-1000. PubMed ID: 388193
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tryptophanyl adenylate formation by tryptophanyl-tRNA synthetase from Escherichia coli.
    Merle M; Trezeguet V; Graves PV; Andrews D; Muench KH; Labouesse B
    Biochemistry; 1986 Mar; 25(5):1115-23. PubMed ID: 3516215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.