These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 22491978)
81. Identifying generalised segmental acceleration patterns that contribute to ground reaction force features across different running tasks. Verheul J; Warmenhoven J; Lisboa P; Gregson W; Vanrenterghem J; Robinson MA J Sci Med Sport; 2019 Dec; 22(12):1355-1360. PubMed ID: 31445948 [TBL] [Abstract][Full Text] [Related]
82. Influence of the forehand stance on knee biomechanics: Implications for potential injury risks in tennis players. Martin C; Sorel A; Touzard P; Bideau B; Gaborit R; DeGroot H; Kulpa R J Sports Sci; 2021 May; 39(9):992-1000. PubMed ID: 33283656 [TBL] [Abstract][Full Text] [Related]
83. Does core strength training influence running kinetics, lower-extremity stability, and 5000-M performance in runners? Sato K; Mokha M J Strength Cond Res; 2009 Jan; 23(1):133-40. PubMed ID: 19077735 [TBL] [Abstract][Full Text] [Related]
84. Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners. Kuhman D; Melcher D; Paquette MR Eur J Sport Sci; 2016; 16(4):433-40. PubMed ID: 26371382 [TBL] [Abstract][Full Text] [Related]
85. Dynamic stability during running gait termination: Predictors for successful control of forward momentum in children and adults. Cesar GM; Sigward SM Hum Mov Sci; 2016 Aug; 48():37-43. PubMed ID: 27101563 [TBL] [Abstract][Full Text] [Related]
86. Ability of sagittal kinematic variables to estimate ground reaction forces and joint kinetics in running. Wille CM; Lenhart RL; Wang S; Thelen DG; Heiderscheit BC J Orthop Sports Phys Ther; 2014 Oct; 44(10):825-30. PubMed ID: 25156183 [TBL] [Abstract][Full Text] [Related]
87. Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics. Rubenson J; Lloyd DG; Heliams DB; Besier TF; Fournier PA J R Soc Interface; 2011 May; 8(58):740-55. PubMed ID: 21030429 [TBL] [Abstract][Full Text] [Related]
88. The biomechanical characteristics of high-performance endurance running. Preece SJ; Bramah C; Mason D Eur J Sport Sci; 2019 Jul; 19(6):784-792. PubMed ID: 30556482 [TBL] [Abstract][Full Text] [Related]
89. The biological limits to running speed are imposed from the ground up. Weyand PG; Sandell RF; Prime DN; Bundle MW J Appl Physiol (1985); 2010 Apr; 108(4):950-61. PubMed ID: 20093666 [TBL] [Abstract][Full Text] [Related]
90. Ability of the planar spring-mass model to predict mechanical parameters in running humans. Bullimore SR; Burn JF J Theor Biol; 2007 Oct; 248(4):686-95. PubMed ID: 17681550 [TBL] [Abstract][Full Text] [Related]
91. External Mechanical Work in Runners With Unilateral Transfemoral Amputation. Murata H; Hisano G; Ichimura D; Takemura H; Hobara H Front Bioeng Biotechnol; 2021; 9():793651. PubMed ID: 35024365 [TBL] [Abstract][Full Text] [Related]
92. Kinetic changes with fatigue and relationship to injury in female runners. Gerlach KE; White SC; Burton HW; Dorn JM; Leddy JJ; Horvath PJ Med Sci Sports Exerc; 2005 Apr; 37(4):657-63. PubMed ID: 15809566 [TBL] [Abstract][Full Text] [Related]
93. Postural stability in human running with step-down perturbations: an experimental and numerical study. Drama Ö; Vielemeyer J; Badri-Spröwitz A; Müller R R Soc Open Sci; 2020 Nov; 7(11):200570. PubMed ID: 33391782 [TBL] [Abstract][Full Text] [Related]
94. Compensations for increased rotational inertia during human cutting turns. Qiao M; Brown B; Jindrich DL J Exp Biol; 2014 Feb; 217(Pt 3):432-43. PubMed ID: 24115061 [TBL] [Abstract][Full Text] [Related]
95. The functions of leg muscles, structures and mechanisms in running. Usherwood JR Biol Lett; 2024 Aug; 20(8):20240260. PubMed ID: 39109896 [TBL] [Abstract][Full Text] [Related]
96. Legs as linkages: an alternative paradigm for the role of tendons and isometric muscles in facilitating economical gait. Usherwood JR J Exp Biol; 2022 Mar; 225(Suppl_1):. PubMed ID: 35258605 [TBL] [Abstract][Full Text] [Related]
97. The Possibility of Zero Limb-Work Gaits in Sprawled and Parasagittal Quadrupeds: Insights from Linkages of the Industrial Revolution. Usherwood JR Integr Org Biol; 2020; 2(1):obaa017. PubMed ID: 33073170 [TBL] [Abstract][Full Text] [Related]
98. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands. Hubel TY; Usherwood JR J Exp Biol; 2015 Sep; 218(Pt 18):2830-9. PubMed ID: 26400978 [TBL] [Abstract][Full Text] [Related]
99. Trunk orientation causes asymmetries in leg function in small bird terrestrial locomotion. Andrada E; Rode C; Sutedja Y; Nyakatura JA; Blickhan R Proc Biol Sci; 2014 Dec; 281(1797):. PubMed ID: 25377449 [TBL] [Abstract][Full Text] [Related]
100. Energetically optimal running requires torques about the centre of mass. Usherwood JR; Hubel TY J R Soc Interface; 2012 Aug; 9(73):2011-5. PubMed ID: 22491978 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]