BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22492034)

  • 1. Dendritic BDNF synthesis is required for late-phase spine maturation and recovery of cortical responses following sensory deprivation.
    Kaneko M; Xie Y; An JJ; Stryker MP; Xu B
    J Neurosci; 2012 Apr; 32(14):4790-802. PubMed ID: 22492034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex.
    Zhou Y; Lai B; Gan WB
    Sci Rep; 2017 Jul; 7(1):4977. PubMed ID: 28694464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines.
    Orefice LL; Waterhouse EG; Partridge JG; Lalchandani RR; Vicini S; Xu B
    J Neurosci; 2013 Jul; 33(28):11618-32. PubMed ID: 23843530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early Sensory Loss Alters the Dendritic Branching and Spine Density of Supragranular Pyramidal Neurons in Rodent Primary Sensory Cortices.
    Macharadze T; Budinger E; Brosch M; Scheich H; Ohl FW; Henschke JU
    Front Neural Circuits; 2019; 13():61. PubMed ID: 31611778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator.
    Mataga N; Mizuguchi Y; Hensch TK
    Neuron; 2004 Dec; 44(6):1031-41. PubMed ID: 15603745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Component Structural Plasticity Mediated by αCaMKII Autophosphorylation on Basal Dendrites of Cortical Layer 2/3 Neurones.
    Seaton G; Hodges G; de Haan A; Grewal A; Pandey A; Kasai H; Fox K
    J Neurosci; 2020 Mar; 40(11):2228-2245. PubMed ID: 32001612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior.
    Vigers AJ; Amin DS; Talley-Farnham T; Gorski JA; Xu B; Jones KR
    Neuroscience; 2012 Jun; 212():1-18. PubMed ID: 22542678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of spine maturation and pruning through proBDNF synthesized and released in dendrites.
    Orefice LL; Shih CC; Xu H; Waterhouse EG; Xu B
    Mol Cell Neurosci; 2016 Mar; 71():66-79. PubMed ID: 26705735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lynx1 Limits Dendritic Spine Turnover in the Adult Visual Cortex.
    Sajo M; Ellis-Davies G; Morishita H
    J Neurosci; 2016 Sep; 36(36):9472-8. PubMed ID: 27605620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterozygous knock-out mice for brain-derived neurotrophic factor show a pathway-specific impairment of long-term potentiation but normal critical period for monocular deprivation.
    Bartoletti A; Cancedda L; Reid SW; Tessarollo L; Porciatti V; Pizzorusso T; Maffei L
    J Neurosci; 2002 Dec; 22(23):10072-7. PubMed ID: 12451106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experience leaves a lasting structural trace in cortical circuits.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Nature; 2009 Jan; 457(7227):313-7. PubMed ID: 19005470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spine dynamics of PSD-95-deficient neurons in the visual cortex link silent synapses to structural cortical plasticity.
    Yusifov R; Tippmann A; Staiger JF; Schlüter OM; Löwel S
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33649238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites.
    Gorski JA; Zeiler SR; Tamowski S; Jones KR
    J Neurosci; 2003 Jul; 23(17):6856-65. PubMed ID: 12890780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex.
    Kim H; Kunz PA; Mooney R; Philpot BD; Smith SL
    J Neurosci; 2016 Apr; 36(17):4888-94. PubMed ID: 27122043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation.
    Kaneko M; Hanover JL; England PM; Stryker MP
    Nat Neurosci; 2008 Apr; 11(4):497-504. PubMed ID: 18311133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nogo Receptor 1 Limits Ocular Dominance Plasticity but not Turnover of Axonal Boutons in a Model of Amblyopia.
    Frantz MG; Kast RJ; Dorton HM; Chapman KS; McGee AW
    Cereb Cortex; 2016 May; 26(5):1975-85. PubMed ID: 25662716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation.
    Majewska A; Sur M
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):16024-9. PubMed ID: 14663137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons.
    Magariños AM; Li CJ; Gal Toth J; Bath KG; Jing D; Lee FS; McEwen BS
    Hippocampus; 2011 Mar; 21(3):253-64. PubMed ID: 20095008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation.
    Oray S; Majewska A; Sur M
    Neuron; 2004 Dec; 44(6):1021-30. PubMed ID: 15603744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.
    Galuske RA; Kim DS; Castrén E; Singer W
    Eur J Neurosci; 2000 Sep; 12(9):3315-30. PubMed ID: 10998115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.