These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22492199)

  • 21. Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering.
    Kuo YC; Chen CW
    Colloids Surf B Biointerfaces; 2013 Feb; 102():789-94. PubMed ID: 23107957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospun nanofibrous 3D scaffold for bone tissue engineering.
    Eap S; Ferrand A; Palomares CM; Hébraud A; Stoltz JF; Mainard D; Schlatter G; Benkirane-Jessel N
    Biomed Mater Eng; 2012; 22(1-3):137-41. PubMed ID: 22766712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides.
    Koss KM; Unsworth LD
    Acta Biomater; 2016 Oct; 44():2-15. PubMed ID: 27544809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review.
    Zhong S; Zhang Y; Lim CT
    Tissue Eng Part B Rev; 2012 Apr; 18(2):77-87. PubMed ID: 21902623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro.
    Liu J; Song H; Zhang L; Xu H; Zhao X
    Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designer functionalised self-assembling peptide nanofibre scaffolds for cartilage tissue engineering.
    He B; Yuan X; Zhou A; Zhang H; Jiang D
    Expert Rev Mol Med; 2014 Aug; 16():e12. PubMed ID: 25089851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembling peptide nanofibrous scaffolds for tissue engineering: novel approaches and strategies for effective functional regeneration.
    Nune M; Kumaraswamy P; Krishnan UM; Sethuraman S
    Curr Protein Pept Sci; 2013 Feb; 14(1):70-84. PubMed ID: 23544748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel nanofibrous spiral scaffolds for neural tissue engineering.
    Valmikinathan CM; Tian J; Wang J; Yu X
    J Neural Eng; 2008 Dec; 5(4):422-32. PubMed ID: 18971515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The performance of laminin-containing cryogel scaffolds in neural tissue regeneration.
    Jurga M; Dainiak MB; Sarnowska A; Jablonska A; Tripathi A; Plieva FM; Savina IN; Strojek L; Jungvid H; Kumar A; Lukomska B; Domanska-Janik K; Forraz N; McGuckin CP
    Biomaterials; 2011 May; 32(13):3423-34. PubMed ID: 21324403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair.
    Liu T; Xu J; Chan BP; Chew SY
    J Biomed Mater Res A; 2012 Jan; 100(1):236-42. PubMed ID: 22042649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells.
    Wang J; Ye R; Wei Y; Wang H; Xu X; Zhang F; Qu J; Zuo B; Zhang H
    J Biomed Mater Res A; 2012 Mar; 100(3):632-45. PubMed ID: 22213384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in polymeric systems for tissue engineering and biomedical applications.
    Ravichandran R; Sundarrajan S; Venugopal JR; Mukherjee S; Ramakrishna S
    Macromol Biosci; 2012 Mar; 12(3):286-311. PubMed ID: 22278779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incorporating protein gradient into electrospun nanofibers as scaffolds for tissue engineering.
    Shi J; Wang L; Zhang F; Li H; Lei L; Liu L; Chen Y
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1025-30. PubMed ID: 20423122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembled peptides: characterisation and in vivo response.
    Nisbet DR; Williams RJ
    Biointerphases; 2012 Dec; 7(1-4):2. PubMed ID: 22589045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications.
    Loo Y; Hauser CA
    Biomed Mater; 2015 Dec; 11(1):014103. PubMed ID: 26694103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research progress of electrospun nanofibers scaffold in nerve tissue engineering].
    Hu X; Wang G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Sep; 24(9):1133-7. PubMed ID: 20939490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels.
    Mahoney MJ; Anseth KS
    Biomaterials; 2006 Apr; 27(10):2265-74. PubMed ID: 16318872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Harnessing the Potential of Self-Assembled Peptide Hydrogels for Neural Regeneration and Tissue Engineering.
    Najafi H; Farahavar G; Jafari M; Abolmaali SS; Azarpira N; Tamaddon AM
    Macromol Biosci; 2024 Jun; 24(6):e2300534. PubMed ID: 38547473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing neurite outgrowth from primary neurones and neural stem cells using thermoresponsive hydrogel scaffolds for the repair of spinal cord injury.
    Nisbet DR; Moses D; Gengenbach TR; Forsythe JS; Finkelstein DI; Horne MK
    J Biomed Mater Res A; 2009 Apr; 89(1):24-35. PubMed ID: 18404707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.