These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22492200)

  • 81. Capsules, infection, and intraluminal antibiotics.
    Burkhardt BR; Fried M; Schnur PL; Tofield JJ
    Plast Reconstr Surg; 1981 Jul; 68(1):43-9. PubMed ID: 7243999
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Adsorption-associated orientational changes of immunoglobulin G and regulated phagocytosis of Staphylococcus epidermidis.
    Hou W; Liu Y; Zhang B; He X; Li H
    J Biomed Mater Res A; 2018 Nov; 106(11):2838-2849. PubMed ID: 30194904
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Metal-Based Antibacterial Substrates for Biomedical Applications.
    Paladini F; Pollini M; Sannino A; Ambrosio L
    Biomacromolecules; 2015 Jul; 16(7):1873-85. PubMed ID: 26082968
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Histological study on acute inflammatory reaction to polyurethane-coated silicone implants in rats.
    Mendes PR; Bins-Ely J; Lima EA; Vasconcellos ZA; d'Acampora AJ; Neves RD
    Acta Cir Bras; 2008; 23(1):93-101. PubMed ID: 18278399
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Microfluidic Shear Assay to Distinguish between Bacterial Adhesion and Attachment Strength on Stiffness-Tunable Silicone Substrates.
    Siddiqui S; Chandrasekaran A; Lin N; Tufenkji N; Moraes C
    Langmuir; 2019 Jul; 35(26):8840-8849. PubMed ID: 31177781
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Surface free energy and interaction of Staphylococcus epidermidis with biomaterials.
    Ferreirós CM; Carballo J; Criado MT; Sáinz V; del Río MC
    FEMS Microbiol Lett; 1989 Jul; 51(1):89-94. PubMed ID: 2792739
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Tunable, antibacterial activity of silicone polyether surfactants.
    Khan MF; Zepeda-Velazquez L; Brook MA
    Colloids Surf B Biointerfaces; 2015 Aug; 132():216-24. PubMed ID: 26057244
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Surface implantation treatments to prevent infection complications in short term devices.
    Davenas J; Thévenard P; Philippe F; Arnaud MN
    Biomol Eng; 2002 Aug; 19(2-6):263-8. PubMed ID: 12202193
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Plastic devices: new fields for old microbes.
    Elliott TS
    Lancet; 1988 Feb; 1(8581):365-6. PubMed ID: 2893181
    [No Abstract]   [Full Text] [Related]  

  • 90. Functional Isoeugenol-Modified Nanogel Coatings for the Design of Biointerfaces.
    Kather M; Skischus M; Kandt P; Pich A; Conrads G; Neuss S
    Angew Chem Int Ed Engl; 2017 Feb; 56(9):2497-2502. PubMed ID: 28128895
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Nanostructured surface topographies have an effect on bactericidal activity.
    Wu S; Zuber F; Maniura-Weber K; Brugger J; Ren Q
    J Nanobiotechnology; 2018 Feb; 16(1):20. PubMed ID: 29490703
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Copper as an antibacterial material in different facilities.
    Inkinen J; Mäkinen R; Keinänen-Toivola MM; Nordström K; Ahonen M
    Lett Appl Microbiol; 2017 Jan; 64(1):19-26. PubMed ID: 27718259
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Plug-In Safe-by-Design Nanoinorganic Antibacterials.
    Gautam M; Park DH; Park SJ; Nam KS; Park GY; Hwang J; Yong CS; Kim JO; Byeon JH
    ACS Nano; 2019 Nov; 13(11):12798-12809. PubMed ID: 31689083
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Manganese dioxide coating reduces bacterial adhesion and infection in silicon implants in animal model.
    Gon LM; de Campos CCC; Riccetto E; Levy CE; Griguol O; Riccetto CLZ
    World J Urol; 2020 Mar; 38(3):783-788. PubMed ID: 31267180
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Role of copper oxides in contact killing of bacteria.
    Hans M; Erbe A; Mathews S; Chen Y; Solioz M; Mücklich F
    Langmuir; 2013 Dec; 29(52):16160-6. PubMed ID: 24344971
    [TBL] [Abstract][Full Text] [Related]  

  • 96. In vitro analysis of modified surfaces of silicone breast implants.
    Siggelkow W; Gescher DM; Siggelkow A; Klee D; Malik E; Rath W; Faridi A
    Int J Artif Organs; 2004 Dec; 27(12):1100-8. PubMed ID: 15645622
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Local inhibition of angiogenesis by halofuginone coated silicone materials.
    Jordan MC; Zeplin PH
    J Mater Sci Mater Med; 2012 May; 23(5):1203-10. PubMed ID: 22421950
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Enhanced cell adhesion to silicone implant material through plasma surface modification.
    Hauser J; Zietlow J; Köller M; Esenwein SA; Halfmann H; Awakowicz P; Steinau HU
    J Mater Sci Mater Med; 2009 Dec; 20(12):2541-8. PubMed ID: 19641852
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Physicochemical properties of copper important for its antibacterial activity and development of a unified model.
    Hans M; Mathews S; Mücklich F; Solioz M
    Biointerphases; 2015 Mar; 11(1):018902. PubMed ID: 26577181
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties.
    Singh AV; Baylan S; Park BW; Richter G; Sitti M
    PLoS One; 2017; 12(4):e0175428. PubMed ID: 28399162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.