These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 22492315)

  • 21. Unsupervised gene set testing based on random matrix theory.
    Frost HR; Amos CI
    BMC Bioinformatics; 2016 Nov; 17(1):442. PubMed ID: 27809777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic regulatory networks mediated by microRNAs and transcription factors under drought, heat and salt stresses in Oryza Sativa spp.
    Nigam D; Kumar S; Mishra DC; Rai A; Smita S; Saha A
    Gene; 2015 Jan; 555(2):127-39. PubMed ID: 25445270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Österlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Joint Bayesian inference of condition-specific miRNA and transcription factor activities from combined gene and microRNA expression data.
    Zacher B; Abnaof K; Gade S; Younesi E; Tresch A; Fröhlich H
    Bioinformatics; 2012 Jul; 28(13):1714-20. PubMed ID: 22563068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic reconstruction of a functional transcriptional regulatory network.
    Hu Z; Killion PJ; Iyer VR
    Nat Genet; 2007 May; 39(5):683-7. PubMed ID: 17417638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of regulatory network topology reveals functionally distinct classes of microRNAs.
    Yu X; Lin J; Zack DJ; Mendell JT; Qian J
    Nucleic Acids Res; 2008 Nov; 36(20):6494-503. PubMed ID: 18927108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local network component analysis for quantifying transcription factor activities.
    Shi Q; Zhang C; Guo W; Zeng T; Lu L; Jiang Z; Wang Z; Liu J; Chen L
    Methods; 2017 Jul; 124():25-35. PubMed ID: 28710010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.
    Hirose O; Yoshida R; Imoto S; Yamaguchi R; Higuchi T; Charnock-Jones DS; Print C; Miyano S
    Bioinformatics; 2008 Apr; 24(7):932-42. PubMed ID: 18292116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of microRNAs and Transcription Factors Co-Regulatory Modules by Integrating Multiple Types of Genomic Data.
    Luo J; Xiang G; Pan C
    IEEE Trans Nanobioscience; 2017 Jan; 16(1):51-59. PubMed ID: 28092569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Model-free unsupervised gene set screening based on information enrichment in expression profiles.
    Niida A; Imoto S; Yamaguchi R; Nagasaki M; Fujita A; Shimamura T; Miyano S
    Bioinformatics; 2010 Dec; 26(24):3090-7. PubMed ID: 20959379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. REGGAE: a novel approach for the identification of key transcriptional regulators.
    Kehl T; Schneider L; Kattler K; Stöckel D; Wegert J; Gerstner N; Ludwig N; Distler U; Schick M; Keller U; Tenzer S; Gessler M; Walter J; Keller A; Graf N; Meese E; Lenhof HP
    Bioinformatics; 2018 Oct; 34(20):3503-3510. PubMed ID: 29741575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool.
    Clark NR; Szymkiewicz M; Wang Z; Monteiro CD; Jones MR; Ma'ayan A
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2015 Nov; 2015():256-262. PubMed ID: 26848405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SubcellulaRVis: a web-based tool to simplify and visualise subcellular compartment enrichment.
    Watson J; Smith M; Francavilla C; Schwartz JM
    Nucleic Acids Res; 2022 Jul; 50(W1):W718-W725. PubMed ID: 35536291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Popularity and performance of bioinformatics software: the case of gene set analysis.
    Xie C; Jauhari S; Mora A
    BMC Bioinformatics; 2021 Apr; 22(1):191. PubMed ID: 33858350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenome-450K-wide methylation signatures of active cigarette smoking: The Young Finns Study.
    Mishra PP; Hänninen I; Raitoharju E; Marttila S; Mishra BH; Mononen N; Kähönen M; Hurme M; Raitakari O; Törönen P; Holm L; Lehtimäki T
    Biosci Rep; 2020 Jul; 40(7):. PubMed ID: 32583859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward a gold standard for benchmarking gene set enrichment analysis.
    Geistlinger L; Csaba G; Santarelli M; Ramos M; Schiffer L; Turaga N; Law C; Davis S; Carey V; Morgan M; Zimmer R; Waldron L
    Brief Bioinform; 2021 Jan; 22(1):545-556. PubMed ID: 32026945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of network motifs using three-way ANOVA.
    Tavakkolkhah P; Zimmer R; Küffner R
    PLoS One; 2018; 13(8):e0201382. PubMed ID: 30080876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.