These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22492337)

  • 1. Test method for empirically determining inertial properties of manual wheelchairs.
    Eicholtz MR; Caspall JJ; Dao PV; Sprigle S; Ferri A
    J Rehabil Res Dev; 2012; 49(1):51-62. PubMed ID: 22492337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental method for measuring the moment of inertia of an electric power wheelchair.
    Wang H; Grindle GG; Connor S; Cooper RA
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4798-801. PubMed ID: 18003079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a Robotic System to Measure Propulsion Work of Over-Ground Wheelchair Maneuvers.
    Liles H; Huang M; Caspall J; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):983-91. PubMed ID: 25420269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories.
    Misch J; Huang M; Sprigle S
    PLoS One; 2020; 15(6):e0234742. PubMed ID: 32555594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in inertia and effect on turning effort across different wheelchair configurations.
    Caspall JJ; Seligsohn E; Dao PV; Sprigle S
    J Rehabil Res Dev; 2013; 50(10):1353-62. PubMed ID: 24699971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of measurements of static weight distribution of manual wheelchairs.
    Tomlinson JD; Aussprung J; Beatty H; Patterson S
    Phys Ther; 1994 Apr; 74(4):349-55. PubMed ID: 8140147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic calibration of a wheelchair dynamometer.
    DiGiovine CP; Cooper RA; Boninger ML
    J Rehabil Res Dev; 2001; 38(1):41-55. PubMed ID: 11322470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.
    Sprigle S; Huang M
    Assist Technol; 2015; 27(4):226-35; quiz 236-7. PubMed ID: 26691562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On "impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults".
    Sprigle S
    Arch Phys Med Rehabil; 2009 Jul; 90(7):1073-5. PubMed ID: 19577018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of rolling resistance and scrub torque of manual wheelchair drive wheels and casters.
    Sprigle S; Huang M; Misch J
    Assist Technol; 2022 Jan; 34(1):91-103. PubMed ID: 31891276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theory of wheelchair wheelie performance.
    Kauzlarich JJ; Thacker JG
    J Rehabil Res Dev; 1987; 24(2):67-80. PubMed ID: 3585785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new dynamic model of the manual wheelchair for straight and curvilinear propulsion.
    Chénier F; Bigras P; Aissaoui R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975357. PubMed ID: 22275561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Three Versions of a Wheelchair Ergometer for Curvilinear Manual Wheelchair Propulsion Using Virtual Reality.
    Salimi Z; Ferguson-Pell M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1215-1222. PubMed ID: 29877846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of vertical reaction forces during propulsion of three different one-arm drive wheelchairs by hemiplegic users.
    Mandy A; Redhead L; McCudden C; Michaelis J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):242-7. PubMed ID: 23527873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of methods for determining rearward static stability of manual wheelchairs.
    Cooper RA; Stewart KJ; VanSickle DP
    J Rehabil Res Dev; 1994; 31(2):144-7. PubMed ID: 7965871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of inertial parameters using a dynamometer.
    Son J; Ryu J; Kim J; Kim Y
    Biomed Mater Eng; 2014; 24(6):2447-55. PubMed ID: 25226945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of field rolling resistance of manual wheelchairs.
    Sauret C; Bascou J; de Saint Rémy N; Pillet H; Vaslin P; Lavaste F
    J Rehabil Res Dev; 2012; 49(1):63-74. PubMed ID: 22492338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for the field assessment of rolling resistance properties of manual wheelchairs.
    Bascou J; Sauret C; Pillet H; Vaslin P; Thoreux P; Lavaste F
    Comput Methods Biomech Biomed Engin; 2013 Apr; 16(4):381-91. PubMed ID: 22260153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of human-generated forces on wheelchairs during total-body extensor thrusts.
    Hong SW; Patrangenaru V; Singhose W; Sprigle S
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):790-8. PubMed ID: 16765494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.