These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 22492397)

  • 1. SABER: a computational method for identifying active sites for new reactions.
    Nosrati GR; Houk KN
    Protein Sci; 2012 May; 21(5):697-706. PubMed ID: 22492397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of designed and randomly generated catalysts for simple chemical reactions.
    Kipnis Y; Baker D
    Protein Sci; 2012 Sep; 21(9):1388-95. PubMed ID: 22811380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ResBoost: characterizing and predicting catalytic residues in enzymes.
    Alterovitz R; Arvey A; Sankararaman S; Dallett C; Freund Y; Sjölander K
    BMC Bioinformatics; 2009 Jun; 10():197. PubMed ID: 19558703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Development of Ground-State Destabilization and Transition-State Stabilization in Two Directed Evolution Paths of Kemp Eliminases.
    Jindal G; Ramachandran B; Bora RP; Warshel A
    ACS Catal; 2017 May; 7(5):3301-3305. PubMed ID: 29082065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EC-BLAST: a tool to automatically search and compare enzyme reactions.
    Rahman SA; Cuesta SM; Furnham N; Holliday GL; Thornton JM
    Nat Methods; 2014 Feb; 11(2):171-4. PubMed ID: 24412978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Efficient Artificial Enzymes Using Crystallographically Enhanced Conformational Sampling.
    Rakotoharisoa RV; Seifinoferest B; Zarifi N; Miller JDM; Rodriguez JM; Thompson MC; Chica RA
    J Am Chem Soc; 2024 Apr; 146(14):10001-10013. PubMed ID: 38532610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of efficient artificial enzymes using crystallographically-enhanced conformational sampling.
    Rakotoharisoa RV; Seifinoferest B; Zarifi N; Miller JDM; Rodriguez JM; Thompson MC; Chica RA
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing a
    Risso VA; Romero-Rivera A; Gutierrez-Rus LI; Ortega-Muñoz M; Santoyo-Gonzalez F; Gavira JA; Sanchez-Ruiz JM; Kamerlin SCL
    Chem Sci; 2020 Jun; 11(24):6134-6148. PubMed ID: 32832059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Drug Resistance Using Deep Mutational Scanning.
    Pines G; Fankhauser RG; Eckert CA
    Molecules; 2020 May; 25(9):. PubMed ID: 32403408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new benchmark illustrates that integration of geometric constraints inferred from enzyme reaction chemistry can increase enzyme active site modeling accuracy.
    Bertolani SJ; Siegel JB
    PLoS One; 2019; 14(4):e0214126. PubMed ID: 30947258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational tools for the evaluation of laboratory-engineered biocatalysts.
    Romero-Rivera A; Garcia-Borràs M; Osuna S
    Chem Commun (Camb); 2016 Dec; 53(2):284-297. PubMed ID: 27812570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.
    Huang X; Xue J; Lin M; Zhu Y
    PLoS One; 2016; 11(5):e0156559. PubMed ID: 27243223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast loop-closure algorithm to accelerate residue matching in computational enzyme design.
    Xue J; Huang X; Lin M; Zhu Y
    J Mol Model; 2016 Feb; 22(2):49. PubMed ID: 26825974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.
    Tian Y; Huang X; Zhu Y
    J Mol Model; 2015 Aug; 21(8):191. PubMed ID: 26162695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational strategies for the design of new enzymatic functions.
    Świderek K; Tuñón I; Moliner V; Bertran J
    Arch Biochem Biophys; 2015 Sep; 582():68-79. PubMed ID: 25797438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in rational approaches for enzyme engineering.
    Steiner K; Schwab H
    Comput Struct Biotechnol J; 2012; 2():e201209010. PubMed ID: 24688651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Enzyme Design: Advances, hurdles and possible ways forward.
    Linder M
    Comput Struct Biotechnol J; 2012; 2():e201209009. PubMed ID: 24688650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid catalytic template searching as an enzyme function prediction procedure.
    Nilmeier JP; Kirshner DA; Wong SE; Lightstone FC
    PLoS One; 2013; 8(5):e62535. PubMed ID: 23675414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using catalytic atom maps to predict the catalytic functions present in enzyme active sites.
    Nosrati GR; Houk KN
    Biochemistry; 2012 Sep; 51(37):7321-9. PubMed ID: 22909276
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.