These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22492400)

  • 1. In-vivo patellar tendon kinematics during weight-bearing deep knee flexion.
    Kobayashi K; Sakamoto M; Hosseini A; Rubash HE; Li G
    J Orthop Res; 2012 Oct; 30(10):1596-603. PubMed ID: 22492400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion.
    Defrate LE; Nha KW; Papannagari R; Moses JM; Gill TJ; Li G
    J Biomech; 2007; 40(8):1716-22. PubMed ID: 17070815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics of the anterior interval of the knee using open dynamic MRI.
    Dragoo JL; Phillips C; Schmidt JD; Scanlan SF; Blazek K; Steadman JR; Williams A
    Clin Biomech (Bristol); 2010 Jun; 25(5):433-7. PubMed ID: 20189271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distal femoral condyle is more internally rotated to the patellar tendon at 90° of flexion in normal knees.
    Kawahara S; Okazaki K; Matsuda S; Nakahara H; Okamoto S; Iwamoto Y
    J Orthop Surg Res; 2015 Apr; 10():54. PubMed ID: 25906977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study.
    Powers CM; Ward SR; Fredericson M; Guillet M; Shellock FG
    J Orthop Sports Phys Ther; 2003 Nov; 33(11):677-85. PubMed ID: 14669963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patellar tendon strain is increased at the site of the jumper's knee lesion during knee flexion and tendon loading: results and cadaveric testing of a computational model.
    Lavagnino M; Arnoczky SP; Elvin N; Dodds J
    Am J Sports Med; 2008 Nov; 36(11):2110-8. PubMed ID: 18768702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of harvesting the central third of the patella tendon on the kinetics of the knee joint and the retropatellar pressure].
    Wilharm A; Dermitas T; Hurschler C; Ostermeier S; Wirth CJ; Bohnsack M
    Z Orthop Ihre Grenzgeb; 2006; 144(1):102-7. PubMed ID: 16498569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional MRI analysis of knee kinematics.
    Patel VV; Hall K; Ries M; Lotz J; Ozhinsky E; Lindsey C; Lu Y; Majumdar S
    J Orthop Res; 2004 Mar; 22(2):283-92. PubMed ID: 15013086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between patellar tendon shortening and in vitro kinematics in the ovine stifle joint.
    Bertollo N; Pelletier MH; Walsh WR
    Proc Inst Mech Eng H; 2013 Apr; 227(4):438-47. PubMed ID: 23637219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI.
    Johal P; Williams A; Wragg P; Hunt D; Gedroyc W
    J Biomech; 2005 Feb; 38(2):269-76. PubMed ID: 15598453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of an augmentation patella prosthesis versus patelloplasty on revision patellar kinematics and quadriceps tendon force: an ex vivo study.
    Mountney J; Wilson DR; Paice M; Masri BA; Greidanus NV
    J Arthroplasty; 2008 Dec; 23(8):1219-31. PubMed ID: 18534488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging of in vivo patellofemoral kinematics after total knee arthroplasty.
    Carpenter RD; Brilhault J; Majumdar S; Ries MD
    Knee; 2009 Oct; 16(5):332-6. PubMed ID: 19188068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of posterior cruciate ligament deficiency on in vivo translation and rotation of the knee during weightbearing flexion.
    Li G; Papannagari R; Li M; Bingham J; Nha KW; Allred D; Gill T
    Am J Sports Med; 2008 Mar; 36(3):474-9. PubMed ID: 18057390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new in vivo technique for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint.
    von Eisenhart-Rothe R; Siebert M; Bringmann C; Vogl T; Englmeier KH; Graichen H
    J Biomech; 2004 Jun; 37(6):927-34. PubMed ID: 15111080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How effective are added constraints in improving TKR kinematics?
    van Duren BH; Pandit H; Beard DJ; Zavatsky AB; Gallagher JA; Thomas NP; Shakespeare DT; Murray DW; Gill HS
    J Biomech; 2007; 40 Suppl 1():S31-7. PubMed ID: 17433336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometrical changes of knee ligaments and patellar tendon during passive flexion.
    Belvedere C; Ensini A; Feliciangeli A; Cenni F; D'Angeli V; Giannini S; Leardini A
    J Biomech; 2012 Jul; 45(11):1886-92. PubMed ID: 22677336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological sagittal plane patellar kinematics during dynamic deep knee flexion.
    Hamai S; Dunbar NJ; Moro-oka TA; Miura H; Iwamoto Y; Banks SA
    Int Orthop; 2013 Aug; 37(8):1477-82. PubMed ID: 23778643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo tibiofemoral contact analysis using 3D MRI-based knee models.
    DeFrate LE; Sun H; Gill TJ; Rubash HE; Li G
    J Biomech; 2004 Oct; 37(10):1499-504. PubMed ID: 15336924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Q-angle influences tibiofemoral and patellofemoral kinematics.
    Mizuno Y; Kumagai M; Mattessich SM; Elias JJ; Ramrattan N; Cosgarea AJ; Chao EY
    J Orthop Res; 2001 Sep; 19(5):834-40. PubMed ID: 11562129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.