BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22492614)

  • 1. Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen.
    Yang W; Grochowski MR; Sen A
    ChemSusChem; 2012 Jul; 5(7):1218-22. PubMed ID: 22492614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodissociation of hydrated hydrogen iodide clusters.
    Lee HM; Kolaski M; Kim KS
    Chemphyschem; 2008 Mar; 9(4):567-71. PubMed ID: 18286552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iodide-catalyzed reductions: development of a synthesis of phenylacetic acids.
    Milne JE; Storz T; Colyer JT; Thiel OR; Dilmeghani Seran M; Larsen RD; Murry JA
    J Org Chem; 2011 Nov; 76(22):9519-24. PubMed ID: 21988471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient synthesis of chiral beta-hydroxy sulfones via ru-catalyzed enantioselective hydrogenation in the presence of iodine.
    Wan X; Meng Q; Zhang H; Sun Y; Fan W; Zhang Z
    Org Lett; 2007 Dec; 9(26):5613-6. PubMed ID: 18047366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkyl ammonium cation stabilized biocidal polyiodides with adaptable high density and low pressure.
    He C; Parrish DA; Shreeve JM
    Chemistry; 2014 May; 20(22):6699-706. PubMed ID: 24782289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steroid-Derived Naphthoquinoline Asphaltene Model Compounds: Hydriodic Acid Is the Active Catalyst in I2-Promoted Multicomponent Cyclocondensation Reactions.
    Schulze M; Scott DE; Scherer A; Hampel F; Hamilton RJ; Gray MR; Tykwinski RR; Stryker JM
    Org Lett; 2015 Dec; 17(23):5930-3. PubMed ID: 26584791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the myth of nascent hydrogen and its implications for biomass conversions.
    Fábos V; Yuen AK; Masters AF; Maschmeyer T
    Chem Asian J; 2012 Nov; 7(11):2629-37. PubMed ID: 22952036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoiodite-mediated cyclopropanation of alkenes.
    Yoshimura A; Koski SR; Kastern BJ; Fuchs JM; Jones TN; Yusubova RY; Nemykin VN; Zhdankin VV
    Chemistry; 2014 May; 20(20):5895-8. PubMed ID: 24687271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of 2-azaindolizines by using an iodine-mediated oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides and an investigation of their photophysical properties.
    Shibahara F; Kitagawa A; Yamaguchi E; Murai T
    Org Lett; 2006 Nov; 8(24):5621-4. PubMed ID: 17107087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural.
    Zhang Y; Degirmenci V; Li C; Hensen EJ
    ChemSusChem; 2011 Jan; 4(1):59-64. PubMed ID: 21226212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diesel and alkane fuels from biomass by organocatalysis and metal-acid tandem catalysis.
    Liu D; Chen EY
    ChemSusChem; 2013 Dec; 6(12):2236-9. PubMed ID: 23939751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jan; 134(1):367-74. PubMed ID: 22122737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic study of a one-step catalytic conversion of fructose to 2,5-dimethyltetrahydrofuran.
    Grochowski MR; Yang W; Sen A
    Chemistry; 2012 Sep; 18(39):12363-71. PubMed ID: 22915231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Re species and acid cocatalyst on Ir-ReOx /SiO2 in the C-O hydrogenolysis of biomass-derived substrates.
    Tomishige K; Tamura M; Nakagawa Y
    Chem Rec; 2014 Dec; 14(6):1041-54. PubMed ID: 25130666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the reactor wall in hydrothermal biomass conversions.
    Fábos V; Yuen AK; Masters AF; Maschmeyer T
    Chem Asian J; 2012 Nov; 7(11):2638-43. PubMed ID: 22952025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The efficient synthesis of morphinandienone alkaloids by using a combination of hypervalent iodine(III) reagent and heteropoly acid.
    Hamamoto H; Shiozaki Y; Nambu H; Hata K; Tohma H; Kita Y
    Chemistry; 2004 Oct; 10(20):4977-82. PubMed ID: 15372696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature chemoselective reduction of nitro groups using non-noble metal nanocatalysts in water.
    Rai RK; Mahata A; Mukhopadhyay S; Gupta S; Li PZ; Nguyen KT; Zhao Y; Pathak B; Singh SK
    Inorg Chem; 2014 Mar; 53(6):2904-9. PubMed ID: 24564248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+ catalyzed by a [C,N] and a [C,C] cyclometalated organoiridium complex at room temperature in water.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jun; 134(22):9417-27. PubMed ID: 22577897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating Morpholine and Oxetane into Benzimidazolequinone Antitumor Agents: The Discovery of 1,4,6,9-Tetramethoxyphenazine from Hydrogen Peroxide and Hydroiodic Acid-Mediated Oxidative Cyclizations.
    Conboy D; Mirallai SI; Craig A; McArdle P; Al-Kinani AA; Barton S; Aldabbagh F
    J Org Chem; 2019 Aug; 84(15):9811-9818. PubMed ID: 31293163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media.
    Wang Y; Yao J; Li H; Su D; Antonietti M
    J Am Chem Soc; 2011 Mar; 133(8):2362-5. PubMed ID: 21294506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.