These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 22492642)

  • 1. GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies.
    Gritsenko AA; Nijkamp JF; Reinders MJ; de Ridder D
    Bioinformatics; 2012 Jun; 28(11):1429-37. PubMed ID: 22492642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SCARPA: scaffolding reads with practical algorithms.
    Donmez N; Brudno M
    Bioinformatics; 2013 Feb; 29(4):428-34. PubMed ID: 23274213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast scaffolding with small independent mixed integer programs.
    Salmela L; Mäkinen V; Välimäki N; Ylinen J; Ukkonen E
    Bioinformatics; 2011 Dec; 27(23):3259-65. PubMed ID: 21998153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ScaffMatch: scaffolding algorithm based on maximum weight matching.
    Mandric I; Zelikovsky A
    Bioinformatics; 2015 Aug; 31(16):2632-8. PubMed ID: 25890305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCOP: a novel scaffolding algorithm based on contig classification and optimization.
    Li M; Tang L; Wu FX; Pan Y; Wang J
    Bioinformatics; 2019 Apr; 35(7):1142-1150. PubMed ID: 30184046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SOPRA: Scaffolding algorithm for paired reads via statistical optimization.
    Dayarian A; Michael TP; Sengupta AM
    BMC Bioinformatics; 2010 Jun; 11():345. PubMed ID: 20576136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SLR: a scaffolding algorithm based on long reads and contig classification.
    Luo J; Lyu M; Chen R; Zhang X; Luo H; Yan C
    BMC Bioinformatics; 2019 Oct; 20(1):539. PubMed ID: 31666010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
    Gao S; Sung WK; Nagarajan N
    J Comput Biol; 2011 Nov; 18(11):1681-91. PubMed ID: 21929371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with Whole Genome Profiling™ Data.
    Madoui MA; Dossat C; d'Agata L; van Oeveren J; van der Vossen E; Aury JM
    BMC Bioinformatics; 2016 Mar; 17():115. PubMed ID: 26936254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maptcha: an efficient parallel workflow for hybrid genome scaffolding.
    Bhowmik O; Rahman T; Kalyanaraman A
    BMC Bioinformatics; 2024 Aug; 25(1):263. PubMed ID: 39118013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ILP-based maximum likelihood genome scaffolding.
    Lindsay J; Salooti H; Măndoiu I; Zelikovsky A
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25253180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SLR-superscaffolder: a de novo scaffolding tool for synthetic long reads using a top-to-bottom scheme.
    Guo L; Xu M; Wang W; Gu S; Zhao X; Chen F; Wang O; Xu X; Seim I; Fan G; Deng L; Liu X
    BMC Bioinformatics; 2021 Mar; 22(1):158. PubMed ID: 33765921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WiseScaffolder: an algorithm for the semi-automatic scaffolding of Next Generation Sequencing data.
    Farrant GK; Hoebeke M; Partensky F; Andres G; Corre E; Garczarek L
    BMC Bioinformatics; 2015 Sep; 16():281. PubMed ID: 26335184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BESST--efficient scaffolding of large fragmented assemblies.
    Sahlin K; Vezzi F; Nystedt B; Lundeberg J; Arvestad L
    BMC Bioinformatics; 2014 Aug; 15(1):281. PubMed ID: 25128196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P_RNA_scaffolder: a fast and accurate genome scaffolder using paired-end RNA-sequencing reads.
    Zhu BH; Xiao J; Xue W; Xu GC; Sun MY; Li JT
    BMC Genomics; 2018 Mar; 19(1):175. PubMed ID: 29499650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSAR: a contig scaffolding tool using algebraic rearrangements.
    Chen KT; Liu CL; Huang SH; Shen HT; Shieh YK; Chiu HT; Lu CL
    Bioinformatics; 2018 Jan; 34(1):109-111. PubMed ID: 28968788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MeDuSa: a multi-draft based scaffolder.
    Bosi E; Donati B; Galardini M; Brunetti S; Sagot MF; Lió P; Crescenzi P; Fani R; Fondi M
    Bioinformatics; 2015 Aug; 31(15):2443-51. PubMed ID: 25810435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.