BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22492816)

  • 1. Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats.
    Deurveilher S; Rusak B; Semba K
    Am J Physiol Regul Integr Comp Physiol; 2012 Jun; 302(12):R1411-25. PubMed ID: 22492816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.
    Wallingford JK; Deurveilher S; Currie RW; Fawcett JP; Semba K
    Neuroscience; 2014 Sep; 277():174-83. PubMed ID: 25010399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostatic sleep and body temperature responses to acute sleep deprivation are preserved following chronic sleep restriction in rats.
    Deurveilher S; Shewchuk SM; Semba K
    J Sleep Res; 2021 Oct; 30(5):e13348. PubMed ID: 33783043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep.
    Kim Y; Laposky AD; Bergmann BM; Turek FW
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10697-702. PubMed ID: 17548824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.
    Baracchi F; Opp MR
    Brain Behav Immun; 2008 Aug; 22(6):982-93. PubMed ID: 18329246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep allostasis in chronic sleep restriction: the role of the norepinephrine system.
    Kim Y; Chen L; McCarley RW; Strecker RE
    Brain Res; 2013 Sep; 1531():9-16. PubMed ID: 23916734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase.
    Trachsel L; Tobler I; Borbély AA
    Am J Physiol; 1986 Dec; 251(6 Pt 2):R1037-44. PubMed ID: 3789191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estradiol and progesterone modulate spontaneous sleep patterns and recovery from sleep deprivation in ovariectomized rats.
    Deurveilher S; Rusak B; Semba K
    Sleep; 2009 Jul; 32(7):865-77. PubMed ID: 19639749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoupling of sleepiness from sleep time and intensity during chronic sleep restriction: evidence for a role of the adenosine system.
    Kim Y; Bolortuya Y; Chen L; Basheer R; McCarley RW; Strecker RE
    Sleep; 2012 Jun; 35(6):861-9. PubMed ID: 22654205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of circadian phase and duration of sleep deprivation on sleep and EEG power spectra in the cat.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1991 May; 548(1-2):206-14. PubMed ID: 1868336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Female reproductive hormones alter sleep architecture in ovariectomized rats.
    Deurveilher S; Rusak B; Semba K
    Sleep; 2011 Apr; 34(4):519-30. PubMed ID: 21461331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of the zero sum principle for circadian, homeostatic and allostatic regulation of sleep-wake state in the rat.
    Stephenson R; Caron AM; Famina S
    Physiol Behav; 2016 Dec; 167():35-48. PubMed ID: 27594095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenging sleep homeostasis in narcolepsy-cataplexy: implications for non-REM and REM sleep regulation.
    Khatami R; Landolt HP; Achermann P; Adam M; Rétey JV; Werth E; Schmid D; Bassetti CL
    Sleep; 2008 Jun; 31(6):859-67. PubMed ID: 18548831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic injection of a nitric oxide synthase inhibitor suppresses sleep responses to sleep deprivation in rats.
    Ribeiro AC; Gilligan JG; Kapás L
    Am J Physiol Regul Integr Comp Physiol; 2000 Apr; 278(4):R1048-56. PubMed ID: 10749794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ovarian hormones promote recovery from sleep deprivation by increasing sleep intensity in middle-aged ovariectomized rats.
    Deurveilher S; Seary ME; Semba K
    Horm Behav; 2013 Apr; 63(4):566-76. PubMed ID: 23454003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep homeostasis in suprachiasmatic nuclei-lesioned rats: effects of sleep deprivation and triazolam administration.
    Trachsel L; Edgar DM; Seidel WF; Heller HC; Dement WC
    Brain Res; 1992 Sep; 589(2):253-61. PubMed ID: 1393593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.