BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22493204)

  • 1. Complete genome sequence of a thermophilic methanogen, Methanocella conradii HZ254, isolated from Chinese rice field soil.
    Lü Z; Lu Y
    J Bacteriol; 2012 May; 194(9):2398-9. PubMed ID: 22493204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil.
    Lü Z; Lu Y
    PLoS One; 2012; 7(4):e35279. PubMed ID: 22530002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen isolated from rice field soil.
    Sakai S; Conrad R; Liesack W; Imachi H
    Int J Syst Evol Microbiol; 2010 Dec; 60(Pt 12):2918-2923. PubMed ID: 20097796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of a rice paddy soil methanogen to syntrophic growth as revealed by transcriptional analyses.
    Liu P; Yang Y; Lü Z; Lu Y
    Appl Environ Microbiol; 2014 Aug; 80(15):4668-76. PubMed ID: 24837392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage 'Rice Cluster I', and proposal of the new archaeal order Methanocellales ord. nov.
    Sakai S; Imachi H; Hanada S; Ohashi A; Harada H; Kamagata Y
    Int J Syst Evol Microbiol; 2008 Apr; 58(Pt 4):929-36. PubMed ID: 18398197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales.
    Sakai S; Takaki Y; Shimamura S; Sekine M; Tajima T; Kosugi H; Ichikawa N; Tasumi E; Hiraki AT; Shimizu A; Kato Y; Nishiko R; Mori K; Fujita N; Imachi H; Takai K
    PLoS One; 2011; 6(7):e22898. PubMed ID: 21829548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage.
    Lueders T; Chin KJ; Conrad R; Friedrich M
    Environ Microbiol; 2001 Mar; 3(3):194-204. PubMed ID: 11321536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription of mcrA Gene Decreases Upon Prolonged Non-flooding Period in a Methanogenic Archaeal Community of a Paddy-Upland Rotational Field Soil.
    Liu D; Nishida M; Takahashi T; Asakawa S
    Microb Ecol; 2018 Apr; 75(3):751-760. PubMed ID: 28890994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil.
    Ma K; Lu Y
    FEMS Microbiol Ecol; 2011 Mar; 75(3):446-56. PubMed ID: 21198683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.
    Wang J; Dong H; Wang W; Gu JD
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2675-86. PubMed ID: 24077726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil.
    Peng J; Wegner CE; Bei Q; Liu P; Liesack W
    Microbiome; 2018 Sep; 6(1):169. PubMed ID: 30231929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archaeal population dynamics during sequential reduction processes in rice field soil.
    Lueders T; Friedrich M
    Appl Environ Microbiol; 2000 Jul; 66(7):2732-42. PubMed ID: 10877762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil.
    Qi L; Ma Z; Chang SX; Zhou P; Huang R; Wang Y; Wang Z; Gao M
    Sci Total Environ; 2021 Jan; 752():141958. PubMed ID: 32892054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils.
    Wu XL; Friedrich MW; Conrad R
    Environ Microbiol; 2006 Mar; 8(3):394-404. PubMed ID: 16478446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigation of methane emission in a rice paddy field amended with biochar-based slow-release fertilizer.
    Dong D; Li J; Ying S; Wu J; Han X; Teng Y; Zhou M; Ren Y; Jiang P
    Sci Total Environ; 2021 Oct; 792():148460. PubMed ID: 34147789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy.
    Kim SY; Pramanik P; Bodelier PL; Kim PJ
    PLoS One; 2014; 9(12):e113593. PubMed ID: 25494364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntrophic oxidation of propionate in rice field soil at 15 and 30°C under methanogenic conditions.
    Gan Y; Qiu Q; Liu P; Rui J; Lu Y
    Appl Environ Microbiol; 2012 Jul; 78(14):4923-32. PubMed ID: 22582054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Duration-Related Variations in Archaeal Communities after a Change from Upland Fields to Paddy Fields.
    Jiang N; Wei K; Chen L; Chen R
    J Microbiol Biotechnol; 2016 May; 26(5):867-75. PubMed ID: 26869602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil.
    Chin KJ; Lukow T; Conrad R
    Appl Environ Microbiol; 1999 Jun; 65(6):2341-9. PubMed ID: 10347011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular ecological perspective of methanogenic archaeal community in rice agroecosystem.
    Alpana S; Vishwakarma P; Adhya TK; Inubushi K; Dubey SK
    Sci Total Environ; 2017 Oct; 596-597():136-146. PubMed ID: 28431358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.